Exercises to Prepare for SVM and Lagrangian Lectures

David S. Rosenberg

1 Equivalent Optimization Problems

Suppose we have two functions $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ and $g: \mathbf{R}^{d} \rightarrow \mathbf{R}$. And suppose we have the following optimization problem:

$$
\min _{x \in \mathbf{R}^{d}} f(x)+g(x) .
$$

This is an unconstrained optimization problem. Now consider the following constrained optimization problem:

This problem is "equivalent" 'to the following problem:

$$
\begin{aligned}
\text { minimize } & f(x)+\xi \\
\text { subject to } & \xi \geq g(x)
\end{aligned}
$$

When an optimization problem is presented in this form, it should be understood as a minimization over all variables that are unknown. This case, we are minimizing over $x \in \mathbf{R}^{d}$ and $\xi \in \mathbf{R}$.

We now claim that these two problems are "equivalent" in the following sense:

- Suppose the second problem attains a minimum at $\left(x^{*}, \xi^{*}\right)$, and that minimum is M. Then the first problem also has a minimum value of M and it is attained at x^{*}. [It follows that $\xi^{*}=g\left(x^{*}\right)$.]
- Conversely, if the first problem attains a minimum at x^{*}, then there is a ξ^{*} for which $\left(x^{*}, \xi^{*}\right)$ is a minimizer of the second problem, and the minimum values are the same.

Exercise 1. Convince yourself that these two problems are equivalent. [Hint/Answer:
In the second problem, for any fixed value of x, the objective is always minimized (subject to the constraint) by $\xi=g(x)$.
Exercise 2. Recall the definition of the "positive part" of a number:

$$
(x)_{+}=x 1(x \geq 0)= \begin{cases}x & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Convince yourself that the problem

$$
\min _{w \in \mathbf{R}^{d}} f(w)+\sum_{i=1}^{n}\left(1-y_{i}\left[w^{T} x_{i}+b\right]\right)_{+}
$$

is equivalent to

$$
\begin{array}{cl}
\operatorname{minimize} & f(w)+\sum_{i=1}^{n} \xi_{i} \\
\text { subject to } & \xi_{i} \geq\left(1-y_{i}\left[w^{T} x_{i}+b\right]\right)_{+} \text {for } i=1, \ldots, n
\end{array}
$$

which is equivalent to

$$
\begin{array}{cl}
\text { minimize } & f(w)+\sum_{i=1}^{n} \xi_{i} \\
\text { subject to } & \xi_{i} \geq 0 \text { for } i=1, \ldots, n \\
& \xi_{i} \geq 1-y_{i}\left[w^{T} x_{i}+b\right] \text { for } i=1, \ldots, n
\end{array}
$$

Exercise 3. Convince yourself that the following two optimization problems are equivalent. First problem:

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & x_{i}+\alpha_{i}=c \text { for } i=1, \ldots, n \\
& x_{i} \geq 0, \alpha_{i} \geq 0 \text { for } i=1, \ldots, n
\end{aligned}
$$

for some known c.
Second problem:

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & x_{i} \in[0, c] \text { for } i=1, \ldots, n
\end{aligned}
$$

(Hint: Figure out what value α_{i} is for any given x_{i}. And what constraints to we need on x_{i} to satisfy the constraints, and so that the corresponding α_{i} also satisfies its constraints?)

2 Lagrangian Encodes Objective and Constraints

First some shorthand: If $\lambda \in \mathbf{R}^{d}$, we write $\lambda \succeq 0$ as a shorthand for $\lambda_{i} \geq$ $0 i=1, \ldots, d$. Similary, if $c \in \mathbf{R}^{d}$, then $\lambda \succeq c$ is shorthand for $\lambda-c \succeq 0$.

We claim that

$$
\sup _{\lambda \succeq 0}(f(x)+\lambda g(x))= \begin{cases}f(x) & \text { for } g(x) \leq 0 \\ \infty & \text { otherwise }\end{cases}
$$

Exercise 4. Convince yourself that this is true. (Hint: Find the sup when $g(x) \leq 0$ and when $g(x)>0$.)

Exercise 5. Show that the following optimization problems are equivalent:

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & g(x) \leq 0
\end{aligned}
$$

is equivalent to

$$
\inf _{x}\left(\sup _{\lambda \succeq 0}(f(x)+\lambda g(x))\right) .
$$

Hint/Solution: Based on the previous exerise, if $g(x)>0$ (i.e. x is "not feasible" for the first optimization problem), then $\sup _{\lambda \succeq 0}(f(x)+\lambda g(x))=$ ∞. So the infimum of the second optimization problem will not occur at any x where $g(x)>0$. Thus the following problem is equivalent to the second problem:

$$
\inf _{\{x \mid g(x) \leq 0\}}\left(\sup _{\lambda \succeq 0}(f(x)+\lambda g(x))\right) .
$$

But when $g(x) \leq 0$, we know from the previous exercise that the supremum evalutes to $f(x)$. Thus the second optimization problem is also equivalent to

$$
\inf _{\{x \mid g(x) \leq 0\}} f(x),
$$

and this is exactly the first optimization problem.

