
Machine Learning – Brett Bernstein

Week 1 Lecture: Concept Check Exercises

Starred problems are optional.

Statistical Learning Theory

1. Suppose A = Y = R and X is some other set. Furthermore, assume PX×Y is a
discrete joint distribution. Compute a Bayes decision function when the loss function
` : A× Y → R is given by

`(a, y) = 1(a 6= y),

the 0− 1 loss.

2. (?) Suppose A = Y = R, X is some other set, and ` : A × Y → R is given by
`(a, y) = (a − y)2, the square error loss. What is the Bayes risk and how does it
compare with the variance of Y ?

3. Let X = {1, . . . , 10}, let Y = {1, . . . , 10}, and let A = Y . Suppose the data generating
distribution, P , has marginal X ∼ Unif{1, . . . , 10} and conditional distribution Y |X =
x ∼ Unif{1, . . . , x}. For each loss function below give a Bayes decision function.

(a) `(a, y) = (a− y)2,

(b) `(a, y) = |a− y|,
(c) `(a, y) = 1(a 6= y).

4. Show that the empirical risk is an unbiased and consistent estimator of the Bayes risk.
You may assume the Bayes risk is finite.

5. Let X = [0, 1] and Y = A = R. Suppose you receive the (x, y) data points (0, 5),
(.2, 3), (.37, 4.2), (.9, 3), (1, 5). Throughout assume we are using the 0− 1 loss.

(a) Suppose we restrict our decision functions to the hypothesis space F1 of constant
functions. Give a decision function that minimizes the empirical risk over F1

and the corresponding empirical risk. Is the empirical risk minimizing function
unique?

(b) Suppose we restrict our decision functions to the hypothesis space F2 of piecewise-
constant functions with at most 1 discontinuity. Give a decision function that
minimizes the empirical risk over F2 and the corresponding empirical risk. Is the
empirical risk minimizing function unique?
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6. (?) Let X = [−10, 10], Y = A = R and suppose the data generating distribution
has marginal distribution X ∼ Unif[−10, 10] and conditional distribution Y |X = x ∼
N (a + bx, 1) for some fixed a, b ∈ R. Suppose you are also given the following data
points: (0, 1), (0, 2), (1, 3), (2.5, 3.1), (−4,−2.1).

(a) Assuming the 0− 1 loss, what is the Bayes risk?

(b) Assuming the square error loss `(a, y) = (a− y)2, what is the Bayes risk?

(c) Using the full hypothesis space of all (measurable) functions, what is the minimum
achievable empirical risk for the square error loss.

(d) Using the hypothesis space of all affine functions (i.e., of the form f(x) = cx+ d
for some c, d ∈ R), what is the minimum achievable empirical risk for the square
error loss.

(e) Using the hypothesis space of all quadratic functions (i.e., of the form f(x) =
cx2 + dx+ e for some c, d, e ∈ R), what is the minimum achievable empirical risk
for the square error loss.

Stochastic Gradient Descent

1. When performing mini-batch gradient descent, we often randomly choose the mini-
batch from the full training set without replacement. Show that the resulting mini-
batch gradient is an unbiased estimate of the gradient of the full training set. Here we
assume each decision function fw in our hypothesis space is determined by a parameter
vector w ∈ Rd.

2. You want to estimate the average age of the people visiting your website. Over a
fixed week we will receive a total of N visitors (which we will call our full population).
Suppose the population mean µ is unknown but the variance σ2 is known. Since we
don’t want to bother every visitor, we will ask a small sample what their ages are.
How many visitors must we randomly sample so that our estimator µ̂ has variance at
most ε > 0?

3. (?) Suppose you have been successfully running mini-batch gradient descent with a full
training set size of 105 and a mini-batch size of 100. After receiving more data your full
training set size increases to 109. Give a heuristic argument as to why the mini-batch
size need not increase even though we have 10000 times more data.
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