Week 2 Lecture: Concept Check Exercises

Starred problems are optional.

Excess Risk Decomposition

- 1. Let $\mathcal{X} = \mathcal{Y} = \{1, 2, ..., 10\}$, $\mathcal{A} = \{1, ..., 10, 11\}$ and suppose the data distribution has marginal distribution $X \sim \text{Unif}\{1, ..., 10\}$. Furthermore, assume Y = X (i.e., Y always has the exact same value as X). In the questions below we use square loss function $\ell(a, x) = (a - x)^2$.
 - (a) What is the Bayes risk?
 - (b) What is the approximation error when using the hypothesis space of constant functions?
 - (c) Suppose we use the hypothesis space \mathcal{F} of affine functions.
 - i. What is the approximation error?
 - ii. Consider the function $\hat{f}(x) = x + 1$. Compute $R(\hat{f}) R(f_{\mathcal{F}})$.
- 2. (*) Let $\mathcal{X} = [-10, 10]$, $\mathcal{Y} = \mathcal{A} = \mathbb{R}$ and suppose the data distribution has marginal distribution $X \sim \text{Unif}(-10, 10)$ and $Y|X = x \sim \mathcal{N}(a + bx, 1)$. Throughout we assume the square loss function $\ell(a, x) = (a x)^2$.
 - (a) What is the Bayes risk?
 - (b) What is the approximation error when using the hypothesis space of constant functions (in terms of a and b)?
 - (c) Suppose we use the hypothesis space of affine functions.
 - i. What is the approximation error?
 - ii. Suppose you have a fixed data set and compute the empirical risk minimizer $\hat{f}_n(x) = c + dx$. What is the estimation error (int terms of a, b, c, d)?
- 3. Try to best characterize each of the following in terms of one or more of optimization error, approximation error, and estimation error.
 - (a) Overfitting.
 - (b) Underfitting.
 - (c) Precise empirical risk minimization for your hypothesis space is computationally intractable.
 - (d) Not enough data.

- 4. (a) We sometimes look at $R(\hat{f}_n)$ as random, and other times as deterministic. What causes this difference?
 - (b) True or False: Increasing the size of our hypothesis space can shift risk from approximation error to estimation error but always leaves the quantity $R(\hat{f}_n) R(f^*)$ constant.
 - (c) True or False: Assume we treat our data set as a random sample and not a fixed quantity. Then the estimation error and the approximation error are random and not deterministic.
 - (d) True or False: The empirical risk of the ERM, $\hat{R}(\hat{f}_n)$, is an unbiased estimator of the risk of the ERM $R(\hat{f}_n)$.
 - (e) In each of the following situations, there is an implicit sample space in which the given expectation is computed. Give that space.
 - i. When we say the empirical risk R(f) is an unbiased estimator of the risk R(f) (where f is independent of the training data used to compute the empirical risk).
 - ii. When we compute the expected empirical risk $\mathbb{E}[R(\hat{f}_n)]$ (i.e., the outer expectation).
 - iii. When we say the minibatch gradient is an unbiased estimator of the full training set gradient.
- 5. For each, use \leq, \geq , or = to determine the relationship between the two quantities, or if the relationship cannot be determined. Throughout assume $\mathcal{F}_1, \mathcal{F}_2$ are hypothesis spaces with $\mathcal{F}_1 \subseteq \mathcal{F}_2$, and assume we are working with a fixed loss function ℓ .
 - (a) The estimation errors of two decision functions f_1, f_2 that minimize the empirical risk over the same hypothesis space, where f_2 uses 5 extra data points.
 - (b) The approximation errors of the two decision functions f_1, f_2 that minimize risk with respect to $\mathcal{F}_1, \mathcal{F}_2$, respectively (i.e., $f_1 = f_{\mathcal{F}_1}$ and $f_2 = f_{\mathcal{F}_2}$).
 - (c) The empirical risks of two decision functions f_1, f_2 that minimize the empirical risk over $\mathcal{F}_1, \mathcal{F}_2$, respectively. Both use the same fixed training data.
 - (d) The estimation errors (for $\mathcal{F}_1, \mathcal{F}_2$, respectively) of two decision functions f_1, f_2 that minimize the empirical risk over $\mathcal{F}_1, \mathcal{F}_2$, respectively.
 - (e) The risk of two decision functions f_1, f_2 that minimize the empirical risk over $\mathcal{F}_1, \mathcal{F}_2$, respectively.
- 6. In the excess risk decomposition lecture, we introduced the decision tree classifier spaces \mathcal{F} (space of all decision trees) and \mathcal{F}_d (the space of decision trees of depth d) and went through some examples. The following questions are based on those slides. Recall that $P_{\mathcal{X}} = \text{Unif}([0, 1]^2), \mathcal{Y} = \{\text{blue, orange}\}, \text{ orange occurs with .9 probability below the line } y = x \text{ and blue occurs with .9 probability above the line } y = x.$

- (a) Prove that the Bayes error rate is 0.1.
- (b) Is the Bayes decision function in \mathcal{F} ?
- (c) For the hypothesis space \mathcal{F}_3 the slide states that $R(\tilde{f}) = 0.176 \pm .004$ for n = 1024. Assuming you had access to the training code that produces \tilde{f} from a set of data points, and random draws from the data generating distribution, give an algorithm (pseudocode) to compute (or estimate) the values 0.176 and .004.

L_1 and L_2 Regularization

1. Consider the following two minimization problems:

$$\underset{w}{\operatorname{arg\,min}} \Omega(w) + \frac{\lambda}{n} \sum_{i=1}^{n} L(f_w(x_i), y_i)$$

and

$$\underset{w}{\operatorname{arg\,min}} C\Omega(w) + \frac{1}{n} \sum_{i=1}^{n} L(f_w(x_i), y_i),$$

where $\Omega(w)$ is the penalty function (for regularization) and L is the loss function. Give sufficient conditions under which these two give the same minimizer.

- 2. (*) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Prove that $\|\nabla f(x)\|_2 \leq L$ if and only if f is Lipschitz with constant L.
- 3. (\star) Let \hat{w} denote the minimizer for

$$\begin{array}{ll} \text{minimize}_w & \|Xw - y\|_2^2\\ \text{subject to} & \|w\|_1 \le r. \end{array}$$

Prove that $f(x) = \hat{w}^T x$ is Lipschitz with constant r.

- 4. Two of the plots in the lecture slides use the fact that $\|\hat{\beta}\|/\|\tilde{\beta}\|$ is always between 0 and 1. Here $\hat{\beta}$ is the parameter vector of the linear model resulting from the regularized least squares problem. Analgously, $\tilde{\beta}$ is the parameter vector from the unregularized problem. Why is this true that the quotient lies in [0, 1]?
- 5. Explain why feature normalization is important if you are using L_1 or L_2 regularization.