Machine Learning — Brett Bernstein

Week 5 Lab: Concept Check Exercises

Kernels

1. Fix n > 0. For x,y € {1,2,...,n} define k(x,y) = min(z,y). Give an explicit feature
map ¢ : {1,2,...,n} to RP (for some D) such that k(x,y) = ¢(z)Tp(y).

LS'(?lugfionj Define ¢(z) = (1(z < 1),1(z < 2),...,1(z < n)). Then o(z)Tp(y) =
min(z, y).

2. Show that k(x,y) = (zTy)* is a positive semidefinite kernel on R? x R

Solution. ki(z,y) = 2Ty is a psd kernel, since 27y is an inner product on R?. Using
the product rule for psd kernels, we see that

k(l‘,y) = kl(a:,y)kl(:c,y)kl(:v,y)kl(x,y) = kl('r73/)4L
is psd as well.

3. Let A € R¥4 be a positive semidefinite matrix. Prove that k(x,y) = 27 Ay is a positive
semidefinite kernel.

Solution. Fix xq,..., 2, € R? and let X denote the matrix that has z! as its ith row.
Then note that (XAXT);; = 2F Az; = k(z;,z;). Thus we are done if we can show
XAXT is positive semidefinite. But note that, for any o € R,

' XAXTa = (XTa)"A(XTa) >0,
since A is positive semidefinite.

4. Consider the objective function
J(w) = [|Xw =yl + AlJw]3.
Assume we have a positive semidefinite kernel k.

(a) What is the kernelized version of this objective?

(b) Given a new test point x, find the predicted value.

Solution.

(a) J(a) = [|[Ka—y|: + Aot Ka, where K;; = k(x;,x;). Here z! is the ith row of X.
(b) falz) =220 cik(zi, @).



5. Show that the standard 2-norm on R" satisfies the parallelogram law.

Solution.
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2||$||2 +2||yH2.

lz = w5 + llz + i3

6. Suppose you are given an training set of distinct points xq, xs,...,z, € R™ and labels
Y1, .-, Yn € {—1,+1}. Show that by properly selecting o you can achieve perfect 0 — 1
loss on the training data using a linear decision function and the RBF kernel.

Solution. By selecting o sufficiently small (say, much smaller than min,; ||z; — z;||2)
we can use «; = y; and get very pointy spikes at each data point. [Note: This is not
possible if any repeated points have different labels, which is not unusual in real data.

7. Suppose you are performing standard ridge regression, which you have kernelized using
the RBF kernel. Prove that any decision function f,(x) learned on a training set must
satisfy fo(z) — 0 as ||z]2 — oo.

Solution. Since fo(x) =1 a;k(x;, x) we have
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8. Consider the standard (unregularized) linear regression problem where we minimize
L(w) = || Xw — yl||3 for some X € R™™ and y € R". Assume m > n.

(a) Let w* be one minimizer of the loss function L above. Give an infinite set of
minimizers of the loss function.
(b) What property defines the minimizer given by the representer theorem (in terms
of X)?
Solution.
(a) {w* +v | v € null(X)}. Using the standard inner product on R", we can also
write null(X') as the set of all vectors orthogonal to the row space of X.

(b) w* lies in the row space of X.
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