
Machine Learning – Brett Bernstein

Week 5 Lab: Concept Check Exercises

Kernels

1. Fix n > 0. For x, y ∈ {1, 2, . . . , n} define k(x, y) = min(x, y). Give an explicit feature
map ϕ : {1, 2, . . . , n} to RD (for some D) such that k(x, y) = ϕ(x)Tϕ(y).

Solution. Define ϕ(x) = (1(x ≤ 1),1(x ≤ 2), . . . ,1(x ≤ n)). Then ϕ(x)Tϕ(y) =
min(x, y).

2. Show that k(x, y) = (xTy)4 is a positive semidefinite kernel on Rd × Rd.

Solution. k1(x, y) = xTy is a psd kernel, since xTy is an inner product on Rd. Using
the product rule for psd kernels, we see that

k(x, y) = k1(x, y)k1(x, y)k1(x, y)k1(x, y) = k1(x, y)4

is psd as well.

3. Let A ∈ Rd×d be a positive semidefinite matrix. Prove that k(x, y) = xTAy is a positive
semidefinite kernel.

Solution. Fix x1, . . . , xn ∈ Rd and let X denote the matrix that has xTi as its ith row.
Then note that (XAXT )ij = xTi Axj = k(xi, xj). Thus we are done if we can show
XAXT is positive semidefinite. But note that, for any α ∈ Rn,

αTXAXTα = (XTα)TA(XTα) ≥ 0,

since A is positive semidefinite.

4. Consider the objective function

J(w) = ‖Xw − y‖1 + λ‖w‖22.

Assume we have a positive semidefinite kernel k.

(a) What is the kernelized version of this objective?

(b) Given a new test point x, find the predicted value.

Solution.

(a) J(α) = ‖Kα− y‖1 +λαTKα, where Kij = k(xi, xj). Here xTi is the ith row of X.

(b) fα(x) =
∑n

i=1 αik(xi, x).
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5. Show that the standard 2-norm on Rn satisfies the parallelogram law.

Solution.

‖x− y‖22 + ‖x+ y‖22 = (‖x‖22 − 2xTy + ‖y‖22) + (‖x‖22 + 2xTy + ‖y‖22)
= 2‖x‖22 + 2‖y‖22.

6. Suppose you are given an training set of distinct points x1, x2, . . . , xn ∈ Rn and labels
y1, . . . , yn ∈ {−1,+1}. Show that by properly selecting σ you can achieve perfect 0−1
loss on the training data using a linear decision function and the RBF kernel.

Solution. By selecting σ sufficiently small (say, much smaller than mini 6=j ‖xi − xj‖2)
we can use αi = yi and get very pointy spikes at each data point. [Note: This is not
possible if any repeated points have different labels, which is not unusual in real data.]

7. Suppose you are performing standard ridge regression, which you have kernelized using
the RBF kernel. Prove that any decision function fα(x) learned on a training set must
satisfy fα(x)→ 0 as ‖x‖2 →∞.

Solution. Since fα(x) =
∑n

i=1 αik(xi, x) we have

lim
‖x‖2→∞

fα(x) = lim
‖x‖2→∞

n∑
i=1

αi exp

(
−‖xi − x‖

2
2

2σ2

)
=

n∑
i=1

αi lim
‖x‖2→∞

exp

(
−‖xi − x‖

2
2

2σ2

)
= 0.

8. Consider the standard (unregularized) linear regression problem where we minimize
L(w) = ‖Xw − y‖22 for some X ∈ Rn×m and y ∈ Rn. Assume m > n.

(a) Let w∗ be one minimizer of the loss function L above. Give an infinite set of
minimizers of the loss function.

(b) What property defines the minimizer given by the representer theorem (in terms
of X)?

Solution.

(a) {w∗ + v | v ∈ null(X)}. Using the standard inner product on Rn, we can also
write null(X) as the set of all vectors orthogonal to the row space of X.

(b) w∗ lies in the row space of X.
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