Machine Learning — Brett Bernstein

Week 7 Lecture: Concept Check Exercises

Multiclass

1. Let X = R? and Y = {1,2,3,4}, with X uniformly distributed on {z | ||z|2 < 1}.
Given X, the value of Y is determined according to the following image, where green
is 1, orange is 2, blue is 3, and magenta is 4.

For the problems below we are using the 0-1 loss.

(a) Consider the multiclass linear hypothesis space

F=A{f| f(x) = argmaxw] z},
i€{1,2,3,4}

where each f is determined by w;, ws, ws, ws € R2. Give fr, a decision function
minimizing the risk over F, by specifying the corresponding wy, wo, w3, wy. Then
give R(fr).



(b) Now consider the restricted hypothesis space

Fir={f] f(z) = argmax w] z, [[w1]| = [Jwa|| = [Jws]| = [Jwal| = 1}.
i€{1,2,3,4}

Consider the decision function f € F; with wq, we, w3, w3 set to the angle bisectors
of the corresponding regions. Give R(f).

(c) Next consider the class-sensitive version of F:

Fo={f | f(z) = argmaxw’ ¥(z,i)},
i€{1,2,3,4}

where w € RP and ¥ : R? x {1,2,3,4} — RP. Give w, ¥ corresponding to fx,,
the decision function minimizing the risk over F.

Solution.

(a) Let wy = (0,1)", wy = (—=1,0)", wg = (0, —¢)", wy = (1,0)”, where ¢ = cot 5 =
2 + /3. The corresponding risk is 0. To see how ¢ was computed, consider the

boundary between the magenta and blue regions. The division occurs along the
vector (cos(m/12), —sin(m/12)). Note that

wy (cos(m/12), — sin(7/12)) = cos(n/12) = w3l (cos(w/12), — sin(7/12)).

(b) We have wy = (0,1), w3 = (0, —1), wy = (— cos(w/2),sin(7/12)), wy = (cos(n/12),sin(7/12)).
This gives the image below.



The dashed lines above are the boundaries of the 4 regions. The resulting risk is
(7.54 7.5+ 225+ 22.5)/360 = 1/6.

(c) Let w=(0,1,—1,0,0, — cot(r/12),1,0) € R® and define
’(b(l', Z) = X1€9;—1 + Taeg; € Rg
where ¢e; is the vector with 1 in the jth position and 0 elsewhere.

2. Recall that the standard (featurized) SVM objective is given by

n

Rw) = 2wl + 31— g ().

i=1

The 2-class multiclass SVM objective is given by
1 C <
Ja(w) = §||w||§ T ;I;;f;x[l — miy(w)]+,

where m; , (w) = WU (2, y;) — w U (2;,y). Give a ¥ (in terms of ¢) so that multiclass
with 2 classes {—1,+1} is equivalent to our standard SVM objective.



Solution. Let U(z,y) = %yw for y € {—1,+1}. Then we have, for y # y;,

1+wle ify,=-1
— . — _ T . — T . — K3 K3 9
L= miy(w) = 1= (W' ziy; —w2iy) /2 { 1—wle; if y; = +1.

This gives 1 — m;,(w) = 1 — ywlo(x;).

. Suppose you trained a decision function f from the hypothesis space F given by

F={f]flx )_argman Y(x,i)}.

Give pseudocode showing how you would use f to forecast the class of a new data
point x.

Solution.

(a) Evaluate w’¢(x,4) fori=1,... k.

(b) Forecast the value i that gives the largest w’+(z,1) value.

. Consider a multiclass SVM with objective
Lo
Jw) = Sl + Zmax — iy ()]s
where m; ,(w) = wT(z;, y;) — wTV(z;,y). Assume Y = {1,...,k}, X =R% w € RP

and ¥ : X x Y — RP. Give a kernelized version of the objective.

Solution. Let X € R™*P matrix that has each ¥ (z;,y)” as rows for eachi =1,...,n
and y = 1,...,k. More precisely, ¥(x;, )T will be in row (i — 1)k + y of X. By
the representer theorem, a solution, if it exists, must have the form w* = X7a. Let
XXT = K, the Gram matrix. Then we have

mi,y(w) = wT\II(x“yZ) - wT\Il(x“y) = (Ka)(ifl)keri - (Ka)(ifl)ker?

and ||w]|2 = o’ K. Substituting we have

J(a) = —aTKa + = Zmax (1= ((Ka) i-1ybty; — (KQ)(i-1yksy))+-

Y#Yi

Note that the Gram matrix K is nk xnk, and thus can be infeasible to store or compute
for nk large.
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