Machine Learning - Brett Bernstein

Week 7 Lecture: Concept Check Exercises

Multiclass

1. Let $\mathcal{X}=\mathbb{R}^{2}$ and $\mathcal{Y}=\{1,2,3,4\}$, with X uniformly distributed on $\left\{x \mid\|x\|_{2} \leq 1\right\}$. Given X, the value of Y is determined according to the following image, where green is 1 , orange is 2 , blue is 3 , and magenta is 4 .

For the problems below we are using the 0-1 loss.
(a) Consider the multiclass linear hypothesis space

$$
\mathcal{F}=\left\{f \mid f(x)=\underset{i \in\{1,2,3,4\}}{\arg \max } w_{i}^{T} x\right\},
$$

where each f is determined by $w_{1}, w_{2}, w_{3}, w_{4} \in \mathbb{R}^{2}$. Give $f_{\mathcal{F}}$, a decision function minimizing the risk over \mathcal{F}, by specifying the corresponding $w_{1}, w_{2}, w_{3}, w_{4}$. Then give $R\left(f_{\mathcal{F}}\right)$.
(b) Now consider the restricted hypothesis space

$$
\mathcal{F}_{1}=\left\{f \mid f(x)=\underset{i \in\{1,2,3,4\}}{\arg \max } w_{i}^{T} x,\left\|w_{1}\right\|=\left\|w_{2}\right\|=\left\|w_{3}\right\|=\left\|w_{4}\right\|=1\right\}
$$

Consider the decision function $f \in \mathcal{F}_{1}$ with $w_{1}, w_{2}, w_{3}, w_{3}$ set to the angle bisectors of the corresponding regions. Give $R(f)$.
(c) Next consider the class-sensitive version of \mathcal{F} :

$$
\mathcal{F}_{2}=\left\{f \mid f(x)=\underset{i \in\{1,2,3,4\}}{\arg \max } w^{T} \Psi(x, i)\right\},
$$

where $w \in \mathbb{R}^{D}$ and $\Psi: \mathbb{R}^{2} \times\{1,2,3,4\} \rightarrow \mathbb{R}^{D}$. Give w, Ψ corresponding to $f_{\mathcal{F}_{2}}$, the decision function minimizing the risk over \mathcal{F}_{2}.

Solution.

(a) Let $w_{1}=(0,1)^{T}, w_{2}=(-1,0)^{T}, w_{3}=(0,-c)^{T}, w_{4}=(1,0)^{T}$, where $c=\cot \frac{\pi}{12}=$ $2+\sqrt{3}$. The corresponding risk is 0 . To see how c was computed, consider the boundary between the magenta and blue regions. The division occurs along the vector $(\cos (\pi / 12),-\sin (\pi / 12))$. Note that

$$
w_{4}^{T}(\cos (\pi / 12),-\sin (\pi / 12))=\cos (\pi / 12)=w_{3}^{T}(\cos (\pi / 12),-\sin (\pi / 12))
$$

(b) We have $w_{1}=(0,1), w_{3}=(0,-1), w_{2}=(-\cos (\pi / 2), \sin (\pi / 12)), w_{4}=(\cos (\pi / 12), \sin (\pi / 12))$. This gives the image below.

The dashed lines above are the boundaries of the 4 regions. The resulting risk is $(7.5+7.5+22.5+22.5) / 360=1 / 6$.
(c) Let $w=(0,1,-1,0,0,-\cot (\pi / 12), 1,0) \in \mathbb{R}^{8}$ and define

$$
\psi(x, i)=x_{1} e_{2 i-1}+x_{2} e_{2 i} \in \mathbb{R}^{8}
$$

where e_{j} is the vector with 1 in the j th position and 0 elsewhere.
2. Recall that the standard (featurized) SVM objective is given by

$$
J_{1}(w)=\frac{1}{2}\|w\|_{2}^{2}+\frac{C}{n} \sum_{i=1}^{n}\left[1-y_{i} w^{T} \varphi\left(x_{i}\right)\right]_{+} .
$$

The 2-class multiclass SVM objective is given by

$$
J_{2}(w)=\frac{1}{2}\|w\|_{2}^{2}+\frac{C}{n} \sum_{i=1}^{n} \max _{y \neq y_{i}}\left[1-m_{i, y}(w)\right]_{+},
$$

where $m_{i, y}(w)=w^{T} \Psi\left(x_{i}, y_{i}\right)-w^{T} \Psi\left(x_{i}, y\right)$. Give a Ψ (in terms of φ) so that multiclass with 2 classes $\{-1,+1\}$ is equivalent to our standard SVM objective.

Solution. Let $\Psi(x, y)=\frac{1}{2} y x$ for $y \in\{-1,+1\}$. Then we have, for $y \neq y_{i}$,

$$
1-m_{i, y}(w)=1-\left(w^{T} x_{i} y_{i}-w^{T} x_{i} y\right) / 2= \begin{cases}1+w^{T} x_{i} & \text { if } y_{i}=-1 \\ 1-w^{T} x_{i} & \text { if } y_{i}=+1\end{cases}
$$

This gives $1-m_{i, y}(w)=1-y_{i} w^{T} \varphi\left(x_{i}\right)$.
3. Suppose you trained a decision function f from the hypothesis space \mathcal{F} given by

$$
\mathcal{F}=\left\{f \mid f(x)=\underset{i \in\{1, \ldots, k\}}{\arg \max } w^{T} \psi(x, i)\right\}
$$

Give pseudocode showing how you would use f to forecast the class of a new data point x.

Solution.

(a) Evaluate $w^{T} \psi(x, i)$ for $i=1, \ldots, k$.
(b) Forecast the value i that gives the largest $w^{T} \psi(x, i)$ value.
4. Consider a multiclass SVM with objective

$$
J(w)=\frac{1}{2}\|w\|_{2}^{2}+\frac{C}{n} \sum_{i=1}^{n} \max _{y \neq y_{i}}\left[1-m_{i, y}(w)\right]_{+},
$$

where $m_{i, y}(w)=w^{T} \Psi\left(x_{i}, y_{i}\right)-w^{T} \Psi\left(x_{i}, y\right)$. Assume $\mathcal{Y}=\{1, \ldots, k\}, \mathcal{X}=\mathbb{R}^{d}, w \in \mathbb{R}^{D}$ and $\psi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^{D}$. Give a kernelized version of the objective.

Solution. Let $X \in \mathbb{R}^{n k \times D}$ matrix that has each $\Psi\left(x_{i}, y\right)^{T}$ as rows for each $i=1, \ldots, n$ and $y=1, \ldots, k$. More precisely, $\Psi\left(x_{i}, y\right)^{T}$ will be in row $(i-1) k+y$ of X. By the representer theorem, a solution, if it exists, must have the form $w^{*}=X^{T} \alpha$. Let $X X^{T}=K$, the Gram matrix. Then we have

$$
m_{i, y}(w)=w^{T} \Psi\left(x_{i}, y_{i}\right)-w^{T} \Psi\left(x_{i}, y\right)=(K \alpha)_{(i-1) k+y_{i}}-(K \alpha)_{(i-1) k+y}
$$

and $\|w\|_{2}^{2}=\alpha^{T} K \alpha$. Substituting we have

$$
J(\alpha)=\frac{1}{2} \alpha^{T} K \alpha+\frac{C}{n} \sum_{i=1}^{n} \max _{y \neq y_{i}}\left(1-\left((K \alpha)_{(i-1) k+y_{i}}-(K \alpha)_{(i-1) k+y}\right)\right)_{+} .
$$

Note that the Gram matrix K is $n k \times n k$, and thus can be infeasible to store or compute for $n k$ large.

