Machine Learning and Computational Statistics, Spring 2017
Homework 1: GD, SGD, and Ridge Regression

Due: Thursday, February 2, 2017, at 10pm (Submit via GradeScope)

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using software
that typesets mathematics (e.g. BTEX, LyX, or MathJax via iPython), though if you need to you
may scan handwritten work. You may find the minted package convenient for including source code
in your BTEX document.

1 Introduction

In this homework you will implement ridge regression using gradient descent and stochastic gradient
descent. We’ve provided a lot of support Python code to get you started on the right track.
References below to particular functions that you should modify are referring to the support code,
which you can download from the website. If you have time after completing the assignment, you
might pursue some of the following:

e Study up on numpy’s broadcasting to see if you can simplify and/or speed up your code.

e Think about how you could make the code more modular so that you could easily try different
loss functions and step size methods.

e Experiment with more sophisticated approaches to setting the step sizes for SGD (e.g. try
out the recommendations in “Bottou’s SGD Tricks” on the website)

e Instead of taking 1 data point at a time, as in SGD, try minibatch gradient descent, where
you use multiple points at a time to get your step direction. How does this effect convergence
speed? Are you getting computational speedup as well by using vectorized code?

e Advanced: What kind of loss function will give us “quantile regression”?

I encourage you to develop the habit of asking “what if?” questions and then seeking the answers.
I guarantee this will give you a much deeper understanding of the material (and likely better
performance on the exam and job interviews, if that’s your focus). You're also encouraged to post
your interesting questions on Piazza under “questions”, or on CrossValidated (http://stats.
stackexchange.com/).

https://github.com/gpoore/minted
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://stats.stackexchange.com/
http://stats.stackexchange.com/

2 Linear Regression

2.1 Feature Normalization

When feature values differ greatly, we can get much slower rates of convergence of gradient-based al-
gorithms. Furthermore, when we start using regularization (introduced in a later problem), features
with larger values can have a much greater effect on the final output for the same regularization cost
— in effect, features with larger values become more important once we start regularizing. One com-
mon approach to feature normalization is to linearly transform (i.e. shift and rescale) each feature
so that all feature values in the training set are in [0, 1]. Each feature gets its own transformation.
We then apply the same transformations to each feature on the test' set. It’s important that the
transformation is “learned” on the training set, and then applied to the test set. It is possible that
some transformed test set values will lie outside the [0, 1] interval.

Modify function feature_normalization to normalize all the features to [0,1]. (Can you
use numpy’s “broadcasting” here?)

2.2 Gradient Descent Setup

In linear regression, we consider the hypothesis space of linear functions hy : R? — R, where

ho(z) = 67z,
for #, 2 € R?%, and we choose # that minimizes the following “square loss” objective function:
1 m 9
JO) =5~ ; (ho(zi) — i)™,
where (21,91);- -, (Tm,Ym) € R? x R is our training data.

While this formulation of linear regression is very convenient, it’s more standard to use a hy-
pothesis space of “affine” functions:

hoy(x) = 0Tz + b,

which allows a “bias” or nonzero intercept term. The standard way to achieve this, while still
maintaining the convenience of the first representation, is to add an extra dimension to z that is
always a fixed value, such as 1. You should convince yourself that this is equivalent. We’ll assume
this representation, and thus we’ll actually take 6, 2 € R**1.

1. Let X € R™*(@+D be the design matrix, where the i’th row of X is x;. Let y =
(Y1, ym)" € R™*! be a the “response”. Write the objective function J(6) as a ma-
trix/vector expression, without using an explicit summation sign.

2. Write down an expression for the gradient of J.

3. In our search for a 6 that minimizes J, suppose we take a step from 6 to 6 + nA, where
A € R is a unit vector giving the direction of the step, and n € R is the length of the
step. Use the gradient to write down an approximate expression for J(6 +nA) — J(6). [This
approximation is called a “linear” or “first-order” approximation.|

IThroughout this assignment we refer to the “test” set. It may be more appropriate to call this set the “validation”
set, as it will be a set of data on which compare the performance of multiple models. Typically a test set is only
used once, to assess the performance of the model that performed best on the validation set.

4. Write down the expression for updating # in the gradient descent algorithm. Let 1 be the
step size.

5. Modify the function compute_square_loss, to compute J(6) for a given #. You might
want to create a small dataset for which you can compute J(#) by hand, and verify that your
compute_square_loss function returns the correct value.

6. Modify the function compute_square_loss_gradient, to compute VyJ(f). You may
again want to use a small dataset to verify that your compute_square_loss_gradient
function returns the correct value.

2.3 Gradient Checker

For many optimization problems, coding up the gradient correctly can be tricky. Luckily, there is
a nice way to numerically check the gradient calculation. If J : R — R is differentiable, then for
any direction vector A € R?, the directional derivative of J at 6 in the direction A is given by?

oy JOFE8) — IO —<A)
e—0 2¢

We can approximate this directional derivative by choosing a small value of € > 0 and evaluating
the quotient above. We can get an approximation to the gradient by approximating the directional
derivatives in each coordinate direction and putting them together into a vector. In other words,
take A = (1,0,0,...,0) to get the first component of the gradient. Then take A = (0,1,0,...,0)
to get the second component. And so on. See http://ufldl.stanford.edu/wiki/index.
php/Gradient_checking_and_advanced_optimization for details.

1. Complete the function grad_checker according to the documentation given. Alternatively,
you may complete the function generic_grad_checker so that it works for any objective
function. It should take as parameters a function that computes the objective function and
a function that computes the gradient of the objective function. Note: Running the gradient
checker takes extra time. In practice, once you're convinced your gradient calculator is correct,
you should stop calling the checker so things run faster.

2.4 Batch Gradient Descent

At the end of the skeleton code, the data is loaded, split into a training and test set, and normalized.
We'll now finish the job of running regression on the training set. Later on we’ll plot the results
together with SGD results.

1. Complete batch_gradient_descent.

2. Now let’s experiment with the step size. Note that if the step size is too large, gradient
descent may not converge®. Starting with a step-size of 0.1, try various different fixed step

20f course, it is also given by the more standard definition of directional derivative, lime_o % [J(0 4+ eA) — J(0)].
The form given gives a better approximation to the derivative when we are using small (but not infinitesimally small)
€.

3For the mathematically inclined, there is a theorem that if the objective function is convex, differentiable, and
Lipschitz continuous with constant L > 0, then gradient descent converges for fixed step sizes smaller than 1/L. See
https://www.cs.cmu.edu/~ggordon/10725-F12/scribes/10725_Lecture5.pdf, Theorem 5.1.

http://ufldl.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization
http://ufldl.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization
https://www.cs.cmu.edu/~ggordon/10725-F12/scribes/10725_Lecture5.pdf

2.5

sizes to see which converges most quickly and/or which diverge. As a minimum, try step sizes
0.5, 0.1, .05, and .01. Plot the value of the objective function as a function of the number of
steps for each step size. Briefly summarize your findings.

. (Optional, but recommended) Implement backtracking line search (google it), and never have

to worry choosing your step size again. How does it compare to the best fixed step-size you
found in terms of number of steps? In terms of time? How does the extra time to run
backtracking line search at each step compare to the time it takes to compute the gradient?
(You can also compare the operation counts.)

Ridge Regression (i.e. Linear Regression with L, regularization)

When we have a large number of features compared to instances, regularization can help control
overfitting. Ridge regression is linear regression with Lo regularization. The regularization term is
sometimes called a penalty term. The objective function for ridge regression is

1 m
— Y (hg(zy x0T,
2m ; 0 x +

where X is the regularization parameter, which controls the degree of regularization. Note that the
bias parameter is being regularized as well. We will address that below.

1.

Compute the gradient of J(#) and write down the expression for updating 6 in the gradient
descent algorithm.

Implement compute_regularized_square_loss_gradient.

. Implement regularized_grad_descent.

For regression problems, we may prefer to leave the bias term unregularized. One approach
is to change J(#) so that the bias is separated out from the other parameters and left unreg-
ularized. Another approach that can achieve approximately the same thing is to use a very
large number B, rather than 1, for the extra bias dimension. Explain why making B large de-
creases the effective regularization on the bias term, and how we can make that regularization
as weak as we like (though not zero).

(Optional) Develop a formal statement of the claim in the previous problem, and prove the
statement.

. (Optional) Try various values of B to see what performs best in test.

Now fix B = 1. Choosing a reasonable step-size (or using backtracking line search), find the
0% that minimizes J(6) over a range of X\. You should plot the training loss and the test loss
(just the square loss part, without the regularization, in each case) as a function of A. Your
goal is to find A that gives the minimum test loss. It’s hard to predict what A that will be,
so you should start your search very broadly, looking over several orders of magnitude. For
example, \ € {10_7, 107°,1073,1071, 1, 10, 100}. Once you find a range that works better,
keep zooming in. You may want to have log(\) on the z-axis rather than A.

What 6 would you select for deployment and why?

2.6 Stochastic Gradient Descent

When the training data set is very large, evaluating the gradient of the loss function can take a
long time, since it requires looking at each training example to take a single gradient step. In this
case, stochastic gradient descent (SGD) can be very effective. In SGD, the gradient of the risk is
approximated by a gradient at a single example. The approximation is poor, but it is unbiased.
The algorithm sweeps through the whole training set one by one, and performs an update for each
training example individually. One pass through the data is called an epoch. Note that each epoch
of SGD touches as much data as a single step of batch gradient descent. Before we begin cycling
through the training examples, it is important to shuffle the examples into a random order. You can
use the same ordering for each epoch, though optionally you could investigate whether reshuffling
after each epoch speeds up convergence.

1. Write down the update rule for # in SGD for the ridge regression objective function.

2. Implement stochastic._grad.-descent. (Note: You could potentially reuse the code you
wrote for batch gradient, though this is not necessary. If we were doing minibatch gradient
descent with batch size greater than 1, you would definitely want to use the same code.)

3. Use SGD to find 03 that minimizes the ridge regression objective for the A and B that
you selected in the previous problem. (If you could not solve the previous problem, choose
A=10"%2 and B = 1). Try a few fixed step sizes (at least try n, € {0.05,.005}. Note that
SGD may not converge with fixed step size. Simply note your results. Next try step sizes that
decrease with the step number according to the following schedules: 7, = % and n; = % For
each step size rule, plot the value of the objective function (or the log of the objective function
if that is more clear) as a function of epoch (or step number) for each of the approaches to step
size. How do the results compare? Two things to note: 1) In this case we are investigating
the convergence rate of the optimization algorithm with different step size schedules, thus
we’re interested in the value of the objective function, which includes the regularization term.
2) As we’ll learn in an upcoming lecture, SGD convergence is much slower than GD once we
get close to the minimizer. (Remember, the SGD step directions are very noisy versions of
the GD step direction). If you look at the objective function values on a logarithmic scale,
it may look like SGD will never find objective values that are as low as GD gets. In terms
we’ll discuss in Week 2, GD has much smaller “optimization error” than SGD. However, this
difference in optimization error is usually dominated by other sources of error (estimation
error and approximation error, which we’ll also discuss in Week 2). Moreover, for very large
datasets, SGD (or minibatch GD) is much faster (by wall-clock time) than GD to reach a
point that’s close enough to the minimum.

4. Estimate the amount of time it takes on your computer for a single epoch of SGD.

5. Comparing SGD and gradient descent, if your goal is to minimize the total number of epochs
(for SGD) or steps (for batch gradient descent), which would you choose? If your goal were
to minimize the total time, which would you choose?

3.1

3.2

1.

Risk Minimization

Square Loss

. Let y be a random variable with a known distribution, and consider the square loss function

{(a,y) = (a — y)?. We want to find the action a* that has minimal risk. That is, we want to
find ¢* = argmin, E (a — y)27 where the expectation is with respect to y. Show that a* = Ey,
and the Bayes risk (i.e. the risk of a*) is Var(y). In other words, if you want to try to predict
the value of a random variable drawn, the best you can do (for minimizing square loss) is to
predict the mean of the distribution. Your expected loss for predicting the mean will be the
variance of the distribution. [Hint: Recall that Var(y) = Ey? — (Ey)>)]

. Now let’s introduce an input. Recall that the expected loss or “risk” of a decision function

f:X— Ais
R(f) = BL(f(2),y),

where (z,y) ~ Pyxy, and the Bayes decision function f* : X — A is a function that
achieves the minimal risk among all possible functions:

R(/") = int R()

Here we consider the regression setting, in which A =) = R. We will show for the square
loss €(a,y) = (a — y)?, the Bayes decision function is f*(x) =E[y |], where the expectation
is over y. As before, we assume know the data-generating distribution Pxxy.

(a) We'll approach this problem by finding the optimal action for any given z. If somebody
tells us =, we know that the corresponding y is coming from the conditional distribution
y | . For a particular z, what value should we predict (i.e. what action a should we
produce) that has minimal expected loss? Express your answer as a decision function
f(z), which gives the best action for any given z. In mathematical notation, we’re

looking for f*(z) = argmin, E [(a — y)2 | x} , where the expectation is with respect to y.

(b) In the previous problem we produced a decision function f*(z) that minimized the risk
for each x. In other words, for any other decision function f(z), f*(z) is going to be at
least as good as f(x), for every single x. That is

E[(f* (@) -9 | 2] <E[(f(2) —9)* | 2],

for all z. To show that f*(z) is the Bayes decision function, we need to show that

for any f. Explain why this is true.

[Optional] Median Loss

(Optional) Show that for the absolute loss £(g,y) = |y — ¢|, then f*(z) is a Bayes decision
function iff f*(z) is the median of the conditional distribution of y given z. [Hint: As in the

previous section, consider one = at time. It may help to use the following characterization of
a median: m is a median of the distribution for random variable Y if P(Y > m) > 1 and
P(Y <m) > 1.] Note: This loss function leads to “median regression”. There are other loss
functions that lead to “quantile regression” for any chosen quantile.

