
Machine Learning and Computational Statistics
Homework 4: Kernel Methods and Lagrangian Duality

Due: Monday, March 27, 2017, at 10pm (Submit via Gradescope)
Instructions: Your answers to the questions below, including plots and mathematical work,

should be submitted as a single PDF file. It’s preferred that you write your answers using software
that typesets mathematics (e.g. LATEX, LYX, or MathJax via iPython), though if you need to you
may scan handwritten work. You may find the minted package convenient for including source code
in your LATEX document. If you are using LYX, then the listings package tends to work better.

1 Introduction
The problem set begins with a review of some important linear algebra concepts that we routinely
use in machine learning and statistics. The solutions to each of these problems is at most a few lines
long, and we’ve tried to give helpful hints. These aren’t meant to be very challenging problems – in
fact, we’d like this material to become second nature to you. We next have a couple problems on
kernel methods: the first explores what geometric information about the data is stored in the kernel
matrix, and the second revisits kernel ridge regression with a direct approach, rather than using
the Representer Theorem. Next we have an optional problem that explores an interesting way to
re-express the Pegasos-style SSGD on any `2 -regularized empirical risk objective function. The new
expression also happens to allow efficient updates in the sparse feature setting. In the next required
problem, we take a direct approach to kernelizing Pegasos. Finally we get to our coding problem, in
which you’ll have the opportunity to see how kernel ridge regression works with different kernels on
a one-dimensional, highly non-linear regression problem. Optionally, we can code a kernelized SVM
and see how it works on a classification problem with a two-dimensional input space. The problem
set ends with optional more problems. The first of these reviews the proof of the Representer
Theorem. The second applies Lagrangian duality to show the equivalence of Tikhonov and Ivanov
regularization. And the third introduces an approach to “novelty” or “anomoly” detection as an
exercise in the machinery of Lagrangian duality.

2 Positive Semidefinite Matrices
In statistics and machine learning, we use positive semidefinite matrices a lot. Let’s recall some
definitions from linear algebra that will be useful here:

Definition. A set of vectors {x1, . . . , xn} is orthonormal if 〈xi, xi〉 = 1 for any i ∈ {1, . . . , n}
(i.e. xi has unit norm), and for any i, j ∈ {1, . . . , n} with i 6= j we have 〈xi, xj〉 = 0 (i.e. xi and xj
are orthogonal).

1

https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings

Note that if the vectors are column vectors in a Euclidean space, we can write this as xTi xj =
1(i 6= j) for all i, j ∈ {1, . . . , n}.

Definition. A matrix is orthogonal if it is a square matrix with orthonormal columns.
It follows from the definition that if a matrix M ∈ Rn×n is orthogonal, then MTM = I, where

I is the n× n identity matrix. Thus MT = M−1, and so MMT = I as well.

Definition. A matrix M is symmetric if M = MT .

Definition. For a square matrix M , if Mv = λv for some column vector v and scalar λ, then v is
called an eigenvector of M and v is the corresponding eigenvalue.

Theorem (Spectral Theorem). A real, symmetric matrix M ∈ Rn×n can be diagonalized as
M = QΣQT , where Q ∈ Rn×n is an orthogonal matrix whose columns are a set of orthonormal
eigenvectors of M , and Σ is a diagonal matrix of the corresponding eigenvalues.

Definition. A real, symmetric matrix M ∈ Rn×n is positive semidefinite (psd) if for any
x ∈ Rn,

xTMx ≥ 0.

Note that unless otherwise specified, when a matrix is described as positive semidefinite, we are
implicitly assuming it is real and symmetric (or complex and Hermitian in certain contexts, though
not here).

As an exercise in matrix multiplication, note that for any matrix A with columns a1, . . . , ad,
that is

A =

 | |
a1 · · · ad
| |

 ∈ Rn×d,

we have

ATMA =

aT1 Ma1 aT1 Ma2 · · · aT1 Mad
aT2 Ma1 aT2 Ma2 · · · aT2 Mad

...
... · · ·

...
aTdMa1 aTdMa2 · · · aTdMad

 .

So M is psd if and only if for any A ∈ Rn×d, we have diag(ATMA) =
(
aT1 Ma1, . . . , a

T
dMad

)T � 0,
where � is elementwise inequality, and 0 is a d× 1 column vector of 0’s .

1. Give an example of an orthogonal matrix that is not symmetric. (Hint: You can use a 2× 2
matrix with only the entries -1, 0, and 1.

2. Use the definition of a psd matrix and the spectral theorem to show that all eigenvalues of a
positive semidefinite matrix M are non-negative. [Hint: By Spectral theorem, Σ = QTMQ
for some Q. What if you take A = Q in the “exercise in matrix multiplication” described
above?]

2

3. In this problem we show that a psd matrix is a matrix version of a non-negative scalar, in
that they both have a “square root”. Show that a symmetric matrix M can be expressed as
M = BBT for some matrix B, if and only if M is psd. [Hint: To show M = BBT implies M
is psd, use the fact that for any vector v, vT v ≥ 0. To show that M psd implies M = BBT

for some B, use the Spectral Theorem.]

3 Positive Definite Matices
Definition. A real, symmetric matrix M ∈ Rn×n is positive definite (spd) if for any x ∈ Rn

with x 6= 0,
xTMx > 0.

1. Show that all eigenvalues of a symmetric positive definite matrix are positive. [Hint: You can
use the same method as you used for psd matrices above.]

2. Let M be a symmetric positve definite matrix. By the spectral theorem, M = QΣQT , where
Σ is a diagonal matrix of the eigenvalues of M . By the previous problem, all diagonal entries
of Σ are positive. If Σ = diag (σ1, . . . , σn), then Σ−1 = diag

(
σ−1

1 , . . . , σ−1
n

)
. Show that the

matrix QΣ−1QT is the inverse of M .

3. Since positive semidefinite matrices may have eigenvalues that are zero, we see by the previous
problem that not all psd matrices are invertible. Show that if M is a psd matrix and I is
the identity matrix, then M + λI is symmetric positive definite for any λ > 0, and give an
expression for the inverse of M + λI.

4. Let M and N be symmetric matrices, with M positive semidefinite and N positive definite.
Use the definitions of psd and spd to show that M +N is symmetric positive definite. Thus
M + N is invertible. (Hint: For any x 6= 0, show that xT (M + N)x > 0. Also note that
xT (M +N)x = xTMx+ xTNx.)

4 [Optional] Kernel Matrices
The following problem will gives us some additional insight into what information is encoded in the
kernel matrix.

1. [Optional] Consider a set of vectors S = {x1, . . . , xm}. Let X denote the matrix whose rows
are these vectors. Form the Gram matrix K = XXT . Show that knowing K is equivalent to
knowing the set of pairwise distances among the vectors in S as well as the vector lengths.
[Hint: The distance between x and y is given by d(x, y) = ‖x− y‖, and the norm of a vector
x is defined as ‖x‖ =

√
〈x, x〉 =

√
xTx.]

3

5 Kernel Ridge Regression
In lecture, we discussed how to kernelize ridge regression using the representer theorem. Here we
pursue a bare-hands approach.

Suppose our input space is X=Rd and our output space is Y = R. LetD = {(x1, y1) , . . . , (xn, yn)}
be a training set from X ×Y. We’ll use the “design matrix” X ∈ Rn×d, which has the input vectors
as rows:

X =

−x1−
...

−xn−

 .

Recall the ridge regression objective function:

J(w) = ||Xw − y||2 + λ||w||2,

for λ > 0.

1. Show that for w to be a minimizer of J(w), we must have XTXw + λIw = XT y. Show that
the minimizer of J(w) is w = (XTX + λI)−1XT y. Justify that the matrix XTX + λI is
invertible, for λ > 0. (The last part should follow easily from the earlier exercises on psd and
spd matrices.)

2. Rewrite XTXw + λIw = XT y as w = 1
λ (XT y −XTXw). Based on this, show that we can

write w = XTα for some α, and give an expression for α.

3. Based on the fact that w = XTα, explain why we say w is “in the span of the data.”

4. Show that α = (λI +XXT)−1y. Note that XXT is the kernel matrix for the standard vector
dot product. (Hint: Replace w by XTα in the expression for α, and then solve for α.)

5. Give a kernelized expression for the Xw, the predicted values on the training points. (Hint:
Replace w by XTα and α by its expression in terms of the kernel matrix XXT .

6. Give an expression for the prediction f(x) = xTw∗ for a new point x, not in the training set.
The expression should only involve x via inner products with other x’s. [Hint: It is often
convenient to define the column vector

kx =

x
Tx1

...
xTxn

to simplify the expression.]

4

6 [Optional] Pegasos and SSGD for `2-regularized ERM1

Consider the objective function

J(w) =
λ

2
‖w‖22 +

1

n

n∑
i=1

`i(w),

where `i(w) represents the loss on the ith training point (xi, yi). Suppose `i(w) : Rd → R is a
convex function. Let’s write

Ji(w) =
λ

2
‖w‖22 + `i(w),

for the one-point approximation to J(w) using the ith training point. Ji(w) is probably a very poor
approximation of J(w). However, if we choose i uniformly at random from 1, . . . , n, then we do
have EJi(w) = J(w). We’ll now show that subgradients of Ji(w) are unbiased estimators of some
subgradient of J(w), which is our justification for using SSGD methods.

In the problems below, you may use the following facts about subdifferentials without proof
(as in Homework #3): 1) If f1, . . . , fm : Rd → R are convex functions and f = f1 + · · · + fm,
then ∂f(x) = ∂f1(x) + · · · + ∂fm(x) [additivity]. 2) For α ≥ 0, ∂ (αf) (x) = α∂f(x) [positive
homogeneity].

1. [Optional] For each i = 1, . . . , n, let gi(w) be a subgradient of Ji(w) at w ∈ Rd. Let vi(w) be
a subgradient of `i(w) at w. Give an expression for gi(w) in terms of w and vi(w)

2. [Optional] Show that Egi(w) ∈ ∂J(w), where the expectation is over the randomly selected
i ∈ 1, . . . , n. (In words, the expectation of our subgradient of a randomly chosen Ji(w) is in
the subdifferential of J .)

3. [Optional] Now suppose we are carrying out SSGD with the Pegasos step-size η(t) = 1/ (λt),
t = 1, 2, In the t’th step, suppose we select the ith point and thus take the step w(t+1) =
w(t) − η(t)gi(w

(t)). Let’s write v(t) = vi(w
(t)), which is the subgradient of the loss part of

Ji(w
(t)) that is used in step t. Show that

w(t+1) = − 1

λt

t∑
τ=1

v(τ)

[Hint: One approach is proof by induction. First show it’s true for w(2). Then assume it’s
true for w(t) and prove it’s true for w(t+1). This will prove that it’s true for all t = 2, 3, . . .
by induction.

1This problem is based on Shalev-Shwartz and Ben-David’s book Understanding Machine Learning: From Theory
to Algorithms, Sections 14.5.3, 15.5, and 16.3).

5

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/index.html
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/index.html

4. [Optional] We can use the previous result to get a nice equivent formulation of Pegasos. Let
θ(t) =

∑t−1
τ=1 v

(t). Then w(t+1) = − 1
λtθ

(t+1) Then Pegasos from Homework #3 is equivalent to
Algorithm 1. Similar to the w = sW decomposition from homework #3, this decomposition

Algorithm 1: Pegasos Algorithm Reformulation
input: Training set (x1, y1) , . . . , (xn, yn) ∈ Rd × {−1, 1} and λ > 0.
θ(1) = (0, . . . , 0) ∈ Rd

w(1) = (0, . . . , 0) ∈ Rd

t = 1 # step number
repeat

randomly choose j in 1, . . . , n
if yj

〈
w(t), xj

〉
< 1

θ(t+1) = θ(t) + yjxj
else
θ(t+1) = θ(t)

endif
w(t+1) = − 1

λtθ
(t+1) # need not be explicitly computed

t = t+ 1
until bored
return w(t) = − 1

λ(t−1)θ
(t)

gives the opportunity for significant speedup. Explain how Algorithm 1 can be implemented
so that, if xj has s nonzero entries, then we only need to do O(s) accesses in every pass
through the loop.

7 Kernelized Pegasos
Recall the SVM objective function

min
w∈Rn

λ

2
‖w‖2 +

1

m

m∑
i=1

max
{

0, 1− yiwTxi
}

and the Pegasos algorithm on the training set (x1, y1) , . . . , (xn, yn) ∈ Rd × {−1, 1} (Algorithm 2).
Note that in every step of Pegasos, we rescale w(t) by

(
1− η(t)λ

)
=
(
1− 1

t

)
∈ (0, 1). This

“shrinks” the entries of w(t) towards 0, and it’s due to the regularization term λ
2 ‖w‖

2
2 in the SVM

objective function. Also note that if the example in a particular step, say (xj , yj), is not classified
with the required margin (i.e. if we don’t have margin yjwTt xj ≥ 1), then we also add a multiple of
xj to w(t) to end up with w(t+1). This part of the adjustment comes from the empirical risk. Since

6

Algorithm 2: Pegasos Algorithm
input: Training set (x1, y1) , . . . , (xn, yn) ∈ Rd × {−1, 1} and λ > 0.
w(1) = (0, . . . , 0) ∈ Rd

t = 0 # step number
repeat
t = t+ 1
η(t) = 1/ (tλ) # step multiplier
randomly choose j in 1, . . . , n
if yj

〈
w(t), xj

〉
< 1

w(t+1) = (1− η(t)λ)w(t) + ηtyjxj
else
w(t+1) = (1− η(t)λ)w(t)

until bored
return w(t)

we initialize with w(1) = 0, we are guaranteed that we can always write2

w(t) =

n∑
i=1

α
(t)
i xi

after any number of steps t. When we kernelize Pegasos, we’ll be tracking α(t) = (α
(t)
1 , . . . , α

(t)
n)T

directly, rather than w.

1. Kernelize the expression for the margin. That is, show that yj
〈
w(t), xj

〉
= yjKj·α

(t), where
k(xi, xj) = 〈xi, xj〉 and Kj· denotes the jth row of the kernel matrix K corresponding to
kernel k.

2. Suppose that w(t) =
∑n
i=1 α

(t)
i xi and for the next step we have selected a point (xj , yj) that

does not have a margin violation. Give an update expression for α(t+1) so that w(t+1) =∑n
i=1 α

(t+1)
i xi.

3. Repeat the previous problem, but for the case that (xj , yj) has a margin violation. Then
give the full pseudocode for kernelized Pegasos. You may assume that you receive the kernel

2Note: This resembles the conclusion of the representer theorem, but it’s saying something different. Here, we
are saying that the w(t) after every step of the Pegasos algorithm lives in the span of the data. The representer
theorem says that a mathematical minimimizer of the SVM objective function (i.e. what the Pegasos algorithm
would converge to after infinitely many steps) lies in the span of the data. If, for example, we had chosen an initial
w(1) that is NOT in the span of the data, then none of the w(t)’s from Pegasos would be in the span of the data.
However, we know Pegasos converges to a minimum of the SVM objective. Thus after a very large number of steps,
w(t) would be very close to being in the span of the data. It’s the gradient of the regularization term that pulls us
back towards the span of the data. This is basically because the regularization is driving all components towards 0,
while the empirical risk updates are only pushing things away from 0 in directions in the span of the data.

7

matrix K as input, along with the labels y1, . . . , yn ∈ {−1, 1}

4. [Optional] Above we’ve directly kernelized . While the direct implementation of the original
Pegasos required updating all entries of w in every step, a direct kernelization of Algorithm 2,
as we have done above, leads to updating all entries of α in every step. Give a version of the
kernelized Pegasos algorithm that does not suffer from this inefficiency. You may try splitting
the scale and direction similar to the approach of the previous problem set, or you may use a
decomposition based on Algorithm 1 from the optional problem 6 above.

8 Kernel Methods: Let’s Implement
In this section you will get the opportunity to code kernel ridge regression and, optionally, kernelized
SVM. To speed things along, we’ve written a great deal of support code for you, which you can find
in the Jupyter notebooks in the homework zip file.

8.1 One more review of kernelization can’t hurt (no problems)
Consider the following optimization problem on a data set (x1, y1) , . . . (xn, yn) ∈ Rd × Y:

min
w∈Rd

R
(√
〈w,w〉

)
+ L (〈w, x1〉 , . . . , 〈w, xn〉) ,

where w, x1, . . . , xn ∈ Rd, and 〈·, ·〉 is the standard inner product on Rd. The function R : R≥0 →
R is nondecreasing and gives us our regularization term, while L : Rn → R is arbitrary3 and
gives us our loss term. We noted in lecture that this general form includes soft-margin SVM
and ridge regression, though not lasso regression. Using the representer theorem, we showed if the
optimization problem has a solution, there is always a solution of the form w =

∑n
i=1 αixi, for some

α ∈ Rn. Plugging this into the our original problem, we get the following “kernelized” optimization
problem:

min
α∈Rn

R
(√

αTKα
)

+ L (Kα) ,

where K ∈ Rn×n is the Gram matrix (or “kernel matrix”) defined by Kij = k(xi, xj) = 〈xi, xj〉.
Predictions are given by

f(x) =

n∑
i=1

αik(xi, x),

and we can recover the original w ∈ Rd by w =
∑n
i=1 αixi.

The “kernel trick” is to swap out occurrences of the kernel k (and the corresponding Gram
matrix K) with another kernel. For example, we could replace k(xi, xj) = 〈xi, xj〉 by k′(xi, xj) =
〈ψ(xi), ψ(xj)〉 for an arbitrary feature mapping ψ : Rd → RD. In this case, the recovered w ∈ RD

would be w =
∑n
i=1 αiψ(xi) and predictions would be 〈w,ψ(xi)〉.

3You may be wondering “Where are the yi’s?”. They’re built into the function L. For example, a square loss on
a training set of size 3 could be represented as L(p1, p2, p3) =

1
3

[
(p1 − y1)

2 + (p2 − y2)
2 + (p3 − y3)

3
]
, where each

pi stands for the ith prediction 〈w, xi〉.

8

More interestingly, we can replace k by another kernel k′′(xi, xj) for which we do not even know
or cannot explicitly write down a corresponding feature map ψ. Our main example of this is the
RBF kernel

k(x, x′) = exp

(
−‖x− x

′‖2

2σ2

)
,

for which the corresponding feature map ψ is infinite dimensional. In this case, we cannot recover
w since it would be infinite dimensional. Predictions must be done using α ∈ Rn, with f(x) =∑n
i=1 αik(xi, x).
Your implementation of kernelized methods below should not make any reference to w or to

a feature map ψ. Your “learning” routine should return α, rather than w, and your prediction
function should also use α rather than w. This will allow us to work with kernels that correspond
to infinite-dimensional feature vectors.

8.2 Kernels and Kernel Machines
There are many different families of kernels. So far we’ve spoken about linear kernels, RBF/Gaus-
sian kernels, and polynomial kernels. The last two kernel types have parameters. In this section
we’ll implement these kernels in a way that will be convenient for implementing our kernelized ML
methods later on. For simplicity, and because it is by far the most common situation4, we will
assume that our input space is X = Rd. This allows us to represent a collection of n inputs in a
matrix X ∈ Rn×d, as usual.

1. Write functions that compute the RBF kernel kRBF(σ)(x, x
′) = exp

(
−‖x− x′‖2/

(
2σ2
))

and
the polynomial kernel kpoly(a,d)(x, x

′) = (a+ 〈x, x′〉)d. The linear kernel klinear(x, x
′) = 〈x, x′〉,

has been done for you in the support code. Your functions should take as input two matri-
ces W ∈ Rn1×d and X ∈ Rn2×d and should return a matrix M ∈ Rn1×n2 where Mij =
k(Wi·, Xj·). In words, the (i, j)’th entry of M should be kernel evaluation between wi (the
ith row of W) and xj (the jth row of X). The matrix M could be called the “cross-kernel”
matrix, by analogy to the cross-covariance matrix. For the RBF kernel, you may use the scipy
function cdist(X1,X2,’sqeuclidean’) in the package scipy.spatial.distance or
(with some more work) write it in terms the linear kernel (Bauckhage’s article on calculating
Euclidean distance matrices may be helpful).

2. Use the linear kernel function defined in the code to compute the kernel matrix on the set of
points x0 ∈ DX = {−4,−1, 0, 2}. Include both the code and the output.

3. Suppose we have the data set D = {(−4, 2), (−1, 0), (0, 3), (2, 5)}. Then by the representer
theorem, the final prediction function will be in the span of the functions x 7→ k(x0, x) for
x0 ∈ DX = {−4,−1, 0, 2}. This set of functions will look quite different depending on the
kernel function we use.

(a) Plot the set of functions x 7→ klinear(x0, x) for x0 ∈ DX and for x ∈ [−6, 6].

(b) Plot the set of functions x 7→ kpoly(1,3)(x0, x) for x0 ∈ DX and for x ∈ [−6, 6].

(c) Plot the set of functions x 7→ kRBF(1)(x0, x) for x0 ∈ DX and for x ∈ [−6, 6].
4We are noting this because one interesting aspect of kernel methods is that they can act directly on an arbitrary

input space X (e.g. text files, music files, etc.), so long as you can define a kernel function k : X ×X → R. But we’ll
not consider that case here.

9

https://en.wikipedia.org/wiki/Cross-covariance
https://multimedia-pattern-recognition.info/fileadmin/Websites/mmprec/uploads/docs/Bauckhage/np-sp-rec-edm.pdf

4. By the representer theorem, the final prediction function will be of the form f(x) =
∑n
i=1 αik(xi, x),

where x1, . . . , xn ∈ X are the inputs in the training set. This is a special case of what is some-
times called a kernel machine, which is a function of the form f(x) =

∑r
i=1 αik(µi, x),

where µ1, . . . , µr ∈ X are called prototypes or centroids (Murphy’s book Section 14.3.1.).
In the special case that the kernel is an RBF kernel, we get what’s called an RBF Network
(proposed by Broomhead and Lowe in 1988). We can see that the prediction functions we get
from our kernel methods will be kernel machines in which every input point x1, . . . , xn serves
as a prototype point. Complete the predict function of the class Kernel_Machine in the
skeleton code. Construct a Kernel_Machine object with the RBF kernel (sigma=1), with
prototype points at −1, 0, 1 and corresponding weights 1,−1, 1. Plot the resulting function.

Note: For this problem, and for other problems below, it may be helpful to use partial appli-
cation on your kernel functions. For example, if your polynomial kernel function has signa-
ture polynomial_kernel(W, X, offset, degree), you can write k = functools.
partial(polynomial_kernel, offset=2, degree=2), and then a call to k(W,X) is
equivalent to polynomial_kernel(W, X, offset=2, degree=2), the advantage be-
ing that the extra parameter settings are built into k(W,X). This can be convenient so that
you can have a function that just takes a kernel function k(W,X) and doesn’t have to worry
about the parameter settings for the kernel.

8.3 Kernel Ridge Regression
In the zip file for this assignment, you’ll find a training and test set, along with some skeleton code.
We’re considering a one-dimensional regression problem, in which X = Y = A = R. We’ll fit this
data using kernelized ridge regression, and we’ll compare the results using several different kernel
functions. Because the input space is one-dimensional, we can easily visualize the results.

1. Plot the training data. You should note that while there is a clear relationship between x and
y, the relationship is not linear.

2. In a previous problem, we showed that in kernelized ridge regression, the final prediction
function is f(x) =

∑n
i=1 αik(xi, x), where α = (λI + K)−1y and K ∈ Rn×n is the Gram

matrix of the training data: Kij = k(xi, xj), for x1, . . . , xn. In terms of kernel machines,
αi is the weight on the kernel function evaluated at the prototype point xi. Complete the
function train_kernel_ridge_regression so that it performs kernel ridge regression
and returns a Kernel_Machine object that can be used for predicting on new points.

3. Use the code provided to plot your fits to the training data for the RBF kernel with a fixed
regularization parameter of 0.0001 for 3 different values of sigma: 0.01, 0.1, and 1.0. With
values of sigma do you think would be more likely to over fit, and which less?

4. Use the code provided to plot your fits to the training data for the RBF kernel with a fixed
sigma of 0.02 and 4 different values of the regularization parameter λ: 0.0001, 0.01, 0.1, and
2.0. What happens to the prediction function as λ→∞?

5. Find the best hyperparameter settings (including kernel parameters and the regularization
parameter) for each of the kernel types. Summarize your results in a table, which gives
training error and test error for each setting. Include in your table the best settings for each

10

https://davidrosenberg.github.io/ml2015/docs/4c.kernels.pdf#page=16
http://sci2s.ugr.es/keel/pdf/algorithm/articulo/1988-Broomhead-CS.pdf
https://en.wikipedia.org/wiki/Partial_application
https://en.wikipedia.org/wiki/Partial_application

kernel type, as well as nearby settings that show that making small change in any one of the
hyperparameters in either direction will cause the performance to get worse. You should use
average square loss on the test set to rank the parameter settings. To make things easier
for you, we have provided an sklearn wrapper for the kernel ridge regression function we
have created so that you can us sklearn’s GridSearchCV. Note: Because of the small dataset
size, these models can be fit extremely fast, so there is no excuse for not doing extensive
hyperparameter tuning.

6. Plot your best fitting prediction functions using the polynomial kernel and the RBF kernel.
Use the domain x ∈ (−0.5, 1.5). Comment on the results.

7. The data for this problem was generated as follows: A function f : R→ R was chosen. Then
to generate a point (x, y), we sampled x uniformly from (0, 1) and we sampled ε ∼ N

(
0, 0.12

)
(so Var(ε) = 0.12). The final point is (x, f(x) + ε). What is the Bayes decision function and
the Bayes risk for the loss function ` (ŷ, y) = (ŷ − y)

2.

8. [Optional] Attempt to improve performance by using different kernel functions. Chapter
4 from Rasmussen and Williams’ book Gaussian Processes for Machine Learning describes
many kernel functions, though they are called covariance functions in that book (but they
have exactly the same definition). Note that you may also create a kernel function by first
explicitly creating feature vectors, if you are so inspire.

9. [Optional] Use any machine learning model you like to get the best performance you can.

8.4 [Optional] Kernelized Support Vector Machines with Kernelized Pe-
gasos

1. Load the SVM training and test data from the zip file. Plot the training data using the code
supplied. Is the data linearly separable? Quadratically seperable? What if we used some
RBF kernel?

2. Unlike for kernel ridge regression, there is no closed-form solution for SVM classification
(kernelized or not). Implement kernelized Pegasos. Because we are not using a sparse repre-
sentation for this data, you will probably not see much gain by implementing the “optimized”
versions described in the problems above.

3. Find the best hyperparameter settings (including kernel parameters and the regularization
parameter) for each of the kernel types. Summarize your results in a table, which gives
training error and test error (i.e. average 0/1 loss) for each setting. Include in your table
the best settings for each kernel type, as well as nearby settings that show that making small
change in any one of the hyperparameters in either direction will cause the performance to
get worse. You should use the 0/1 loss on the test set to rank the parameter settings.

4. Plot your best fitting prediction functions using the linear, polynomial, and the RBF kernel.
The code provided may help.

11

http://www.gaussianprocess.org/gpml/chapters/RW4.pdf
http://www.gaussianprocess.org/gpml/chapters/RW4.pdf

9 Representer Theorem [Optional]
Recall the following theorem from lecture:

Theorem (Representer Theorem). Let

J(w) = R (‖w‖) + L (〈w,ψ(x1)〉 , . . . , 〈w,ψ(xn)〉) ,

where R : R≥0 → R is nondecreasing (the regularization term) and L : Rn → R is arbitrary (the
loss term). If J(w) has a minimizer, then it has a minimizer of the form

w∗ =

n∑
i=1

αiψ(xi).

Furthermore, if R is strictly increasing, then all minimizers have this form.

Note: There is nothing in this theorem that guarantees J(w) has a minimizer at all. If there is
no minimizer, then this theorem does not tell us anything.

In this problem, we will prove the part of the Representer theorem for the case that R is strictly
increasing.

1. Let M be a closed subspace of a Hilbert space H. For any x ∈ H, let m0 = ProjMx be the
projection of x onto M . By the Projection Theorem, we know that (x−m0) ⊥M . Then by
the Pythagorean Theorem, we know ‖x‖2 = ‖m0‖2 + ‖x−m0‖2. From this we concluded in
lecture that ‖m0‖ ≤ ‖x‖. Show that we have ‖m0‖ = ‖x‖ only when m0 = x. (Hint: Use the
postive-definiteness of the inner product: 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇐⇒ x = 0, and the fact
that we’re using the norm derived from such an inner product.)

2. Give the proof of the Representer Theorem in the case that R is strictly increasing. That
is, show that if R is strictly increasing, then all minimizers have this form claimed. (Hint:
Consider separately the cases that ‖w‖ < ‖w∗‖ and the case ‖w‖ = ‖w∗‖.)

3. Suppose that R : R≥0 → R and L : Rn → R are both convex functions. Use properties
of convex functions to show that w 7→ L (〈w,ψ(x1)〉 , . . . , 〈w,ψ(xn)〉) is a convex function of
w, and then that J(w) is also convex function of w. For simplicity, you may assume that
our feature space is Rd, rather than a generic Hilbert space. You may also use the fact that
the composition of a convex function and an affine function is convex. That is:, suppose
f : Rn → R, A ∈ Rn×m and b ∈ Rn. Define g : Rm → R by g(x) = f (Ax+ b). Then if f
is convex, then so is g. From this exercise, we can conclude that if L and R are convex, then
J does have a minimizer of the form w∗ =

∑n
i=1 αiψ(xi), and if R is also strictly increasing,

then all minimizers of J have this form.

10 Ivanov and Tikhonov Regularization [Optional]
In lecture there was a claim that the Ivanov and Tikhonov forms of ridge and lasso regression are
equivalent. We will now prove a more general result.

12

10.1 Tikhonov optimal implies Ivanov optimal
Let φ : F → R be any performance measure of f ∈ F , and let Ω : F → R be any complexity mea-
sure. For example, for ridge regression over the linear hypothesis space F =

{
fw(x) = wTx | w ∈ Rd

}
,

we would have φ(fw) = 1
n

∑n
i=1

(
wTxi − yi

)2 and Ω(fw) = wTw.

1. Suppose that for some λ > 0 we have the Tikhonov regularization solution

f∗ = arg min
f∈F

[φ(f) + λΩ(f)] . (1)

Show that f∗ is also an Ivanov solution. That is, ∃r > 0 such that

f∗ = arg min
f∈F

φ(f) subject to Ω(f) ≤ r. (2)

(Hint: Start by figuring out what r should be. If you’re stuck on this, ask for help. Then
one approach is proof by contradiction: suppose f∗ is not the optimum in (2) and show that
contradicts the fact that f∗ solves (1).)

10.2 Ivanov optimal implies Tikhonov optimal (when we have Strong
Duality)

For the converse, we will restrict our hypothesis space to a parametric set. That is,

F =
{
fw(x) : X → R | w ∈ Rd

}
.

So we will now write φ and Ω as functions of w ∈ Rd.
Let w∗ be a solution to the following Ivanov optimization problem:

minimize φ(w)

subject to Ω(w) ≤ r.

Assume that strong duality holds for this optimization problem and that the dual solution is at-
tained. Then we will show that there exists a λ ≥ 0 such that w∗ = arg minw∈Rd [φ(w) + λΩ(w)] .

1. Write the Lagrangian L(w, λ) for the Ivanov optimization problem.

2. Write the dual optimization problem in terms of the dual objective function g(λ), and give
an expression for g(λ). [Writing g(λ) as an optimization problem is expected - don’t try to
solve it.]

3. We assumed that the dual solution is attained, so let λ∗ = arg maxλ≥0 g(λ). We also assumed
strong duality, which implies φ(w∗) = g(λ∗). Show that the minimum in the expression for
g(λ∗) is attained at w∗. [Hint: You can use the same approach we used when we derived that

13

strong duality implies complementary slackness5.] Conclude the proof by showing that for
the choice of λ = λ∗, we have w∗ = arg minw∈Rd [φ(w) + λΩ(w)] .

4. The conclusion of the previous problem allows λ = 0, which means we’re not actually regular-
izing at all. To ensure we get a proper Ivanov regularization problem, we need an additional
assumption. The one below is taken from [?]:

inf
w∈Rd

φ(w) < inf
w∈Rd

Ω(w)≤r

φ(w)

Note that this is a rather intuitive condition: it is simply saying that we can fit the training
data better [strictly better] if we don’t use any regularization. With this additional condition,
show that w∗ = arg minw∈Rd [φ(w) + λΩ(w)] for some λ > 0.

10.3 Ivanov implies Tikhonov for Ridge Regression.
To show that Ivanov implies Tikhonov for the ridge regression problem (square loss with `2 regu-
larization), we need to demonstrate strong duality and that the dual optimum is attained. Both of
these things are implied by Slater’s constraint qualifications.

1. Show that the Ivanov form of ridge regression is a convex optimization problem with a strictly
feasible point.

11 Novelty Detection [Optional]
(Problem derived from Michael Jordan’s Stat 241b Problem Set #2, Spring 2004)

A novelty detection algorithm can be based on an algorithm that finds the smallest possible
sphere containing the data in feature space.

1. Let φ : X → H be our feature map, mapping elements of the input space into our “feature
space” H, which is a Hilbert space (and thus has an inner product). Formulate the novelty
detection algorithm described above as an optimization problem.

2. Give the Lagrangian for this problem, and write an equivalent, unconstrained “ inf sup” version
of the optimization problem.

3. Show that we have strong duality and thus we will have an equivalent optimization problem
if we swap the inf and the sup. [Hint: Use Slater’s qualification conditions.]

5See https://davidrosenberg.github.io/mlcourse/Archive/2016/Lectures/3b.
convex-optimization.pdf#page=30 slide 30.

14

https://davidrosenberg.github.io/mlcourse/Archive/2016/Lectures/3b.convex-optimization.pdf#page=30
https://davidrosenberg.github.io/mlcourse/Archive/2016/Lectures/3b.convex-optimization.pdf#page=30

4. Solve the inner minimization problem and give the dual optimization problem. [Note: You
may find it convenient to define the kernel function k(xi, xj) = 〈φ(xi), φ(xj)〉 and to write
your final problem in terms of the corresponding kernel matrix K to simplify notation.]

5. Write an expression for the optimal sphere in terms of the solution to the dual problem.

6. Write down the complementary slackness conditions for this problem, and characterize the
points that are the “support vectors”.

7. Briefly explain how you would apply this algorithm in practice to detect “novel” instances.

8. [More Optional] Redo this problem allowing some of the data to lie outside of the sphere,
where the number of points outside the sphere can be increased or decreased by adjusting a
parameter. (Hint: Use slack variables).

15

