
Machine Learning – Brett Bernstein

Recitation 3: Geometric Derivation of SVMs

Intro Question

1. You have been given a data set (xi, yi) for i = 1, . . . , n where xi ∈ Rd and yi ∈ {−1, 1}.
Assume w ∈ Rd and a ∈ R.

(a) Suppose yi(w
Txi+a) > 0 for all i. Use a picture to explain what this means when

d = 2.

(b) Fix M > 0. Suppose yi(w
Txi + a) ≥ M for all i. Use a picture to explain what

this means when d = 2.

Figure 1: Data set with xi ∈ R2 and yi ∈ {+1,−1}

Solution.

(a) The data is linearly separable.

(b) The data is separable with geometric margin at least M/‖w‖2.

Both of these answers will be fleshed out in the upcoming sections.
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Support Vector Machines

Review of Geometry

If v, w ∈ Rd then the component (also called scalar projection) of v in the direction w is given

by the scalar
wTv

‖w‖2
. This can also be thought of as the signed length of v when orthogonally

projected onto the line through the vector w.

wT v1
‖w‖2

wT v2
‖w‖2

w

v1

v2

Figure 2: Component of v1, v2 in the direction w

Assuming w 6= 0 we can use this to interpret the set

S = {x ∈ Rd | wTx = b}.

Noting that wTx = b ⇐⇒ wT x
‖w‖2 = b

‖w‖2 we see that S contains all vectors whose component

in the direction w is b
‖w‖2 . Using linear algebra we can see this is the hyperplane orthogonal

to the vector w that passes through the point bw
‖w‖22

. Note also that there are infinitely many

pairs (w, b) that give the same hyperplane. If c 6= 0 then

{x ∈ Rd | wTx = b} and {x ∈ Rd | (cw)Tx = (cb)}

result in the same hyperplanes.
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wT v = −4

wT v = −3

wT v = −2

wT v = −1

wT v = 0

wT v = 1

wT v = 2

wT v = 3

wT v = 4

wT v = 5

w

Figure 3: Level Surfaces of f(v) = wTv with ‖w‖2 = 1

Given a hyperplane {v | wTv = b}, we can distinguish points x ∈ Rd depending on
whether wTx − b is zero, positive, or negative, or in other words, whether x is on the
hyperplane, on the side w is pointing at, or on the side −w is pointing at.
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w

wTv = 15

wTv − 15 > 0

wTv − 15 < 0

Figure 4: Sides of the Hyperplane wTv = 15

If we have a vector x ∈ Rd and a hyperplane H = {v | wTv = b} we can measure the
distance from x to H by

d(x,H) =

∣∣∣∣wTx− b‖w‖2

∣∣∣∣ .
Without the absolute values we get the signed distance: a positive distance if wTx > b and a
negative distance if wTx < b. To see why this formula is correct, note that we are computing

wTx

‖w‖2
− wTv

‖w‖2
,

where v is any vector in the hyperplane {v | wTv = b}. This is the difference between their
components in the direction w.
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wTx1 − 20

‖w‖2
= − 8√

10

wTx2 − 20

‖w‖2
=

7√
10

x1

x2

‖w‖2 =
√
10

wTv = 20

wTv = 12

wTv = 27

Figure 5: Signed Distance from x1, x2 to Hyperplane wTv = 20

Hard Margin SVM

Returning to the initial question, suppose we have the data set (xi, yi) for i = 1, . . . , n where
xi ∈ Rd and yi ∈ {−1, 1}.

Definition 1 (Linearly Separable). We say (xi, yi) for i = 1, . . . , n are linearly separable if
there is a w ∈ Rd and a ∈ R such that yi(w

Txi+a) > 0 for all i. The set {v ∈ Rd | wTv+a =
0} is called a separating hyperplane.

Let’s examine what this definition says. If yi = +1 then we require that wTxi > −a and
if yi = −1 we require that wTxi < −a. Thus linearly separable means that we can separate
all of the +1’s from the −1’s using the hyperplane {v | wTv = −a}. For the rest of this
section, we assume our data is linearly separable.
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Figure 6: Linearly Separable Data

If we can find the w, a corresponding to a hyperplane that separates the data, we then
have a decision function for classifiying elements of X : f(x) = sgn(wTx+a). Before we look
for such a hyperplane, we must address another issue. If the data is linearly separable, then
there are infinitely many choices of separating hyperplanes.

Figure 7: Many Separating Hyperplanes Exist

We will choose the hyperplane that maximizes a quantity called the geometric margin.

Definition 2 (Geometric Margin). Let H be a hyperplane that separates the data (xi, yi)
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for i = 1, . . . , n. The geometric margin of this hyperplane is

min
i
d(xi, H),

the distance from the hyperplane to the closest data point.

Fix w ∈ Rd and a ∈ R with yi(w
Txi + a) > 0 for all i. Then we saw earlier that

d(xi, H) =

∣∣∣∣wTxi + a

‖w‖2

∣∣∣∣ =
yi(w

Txi + a)

‖w‖2
.

This gives us the following optimization problem:

maximizew,a min
i

yi(w
Txi + a)

‖w‖2
.

We can rewrite this in a more standard form:

maximizew,a,M M

subject to
yi(w

Txi + a)

‖w‖2
≥M for all i.

M

M

wT v+a
‖w‖2 = −M

wT v+a
‖w‖2 = 0

wT v+a
‖w‖2 = M

Figure 8: Maximum Margin Separating Hyperplane
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Note above how the geometric margin is achieved on both sides of the optimal hyperplane.
This must be the case, as otherwise we could slightly move the hyperplane and obtain a better
solution. The expression yi(w

Txi + a)/‖w‖2 allows us to choose any positive value for ‖w‖2
by changing a accordingly (e.g., we can replace w → 2w and a→ 2a and get the same value
for all (xi, yi)). Thus we can fix ‖w‖2 = 1/M and obtain

maximizew,a 1/‖w‖2
subject to yi(w

Txi + a) ≥ 1 for all i.

To find the optimal w, a we can instead solve the minimization problem

minimizew,a ‖w‖22
subject to yi(w

Txi + a) ≥ 1 for all i.

This is a quadratic program that can be solved by standard packages.

Here the geometric margin is 1
‖w‖2 which is also the minimum of yi(w

T xi+a)
‖w‖2 over the

training data. The concept of margin used in class (also called functional margin) is slightly
different, but clearly related. It is the value yi(w

Txi + a) denoting the score we give to a
given training example.

Soft Margin SVM

The methods developed thus far require linearly separable data. To remove this restriction,
we will allow vectors to violate the geometric margin requirements, but at a penalty. More
precisely, we replace our previous SVM formulation

minimizew,a ‖w‖22
subject to yi(w

Txi + a) ≥ 1 for all i

with
minimizew,a,ξ ‖w‖22 + C

n

∑n
i=1 ξi

subject to yi(w
Txi + a) ≥ 1− ξi for all i

ξi ≥ 0 for all i.

This is the standard formulation of a support vector machine. When ξi > 0 the corresponding
xi violates the geometric margin condition. Each ξi is called a slack variable. The constant
C controls how much we penalize violations. Rewriting the condition as

yi(w
Txi + a)

‖w‖2
≥ 1− ξi
‖w‖2

shows that ξi measures the size of the violation in multiples of the geometric margin. For
example, ξi = 1 means xi lies on the decision hyperplane wTv + a = 0, and ξi = 3 means xi
lies 2 margin widths past the decision hyperplane.
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ξi = 1.5

ξi = 3

ξi = 1.5
ξi = 2

Figure 9: Soft Margin SVM (unlabeled points have ξi = 0)

Recall from the treatment in class, that the minimizer w will be a linear combination
of some of the xi, called support vectors. More precisely, the support vectors will be some
subset of the xi that either lie on the margin boundary (yi(w

Txi + a) = 1) or violate the
margin boundary (yi(w

Txi + a) < 1, ξi > 0).

Regularization Interpretation

Consider the following two questions:

1. If your data is linearly separable, which SVM (hard margin or soft margin) would you
use?

Solution. While a hard margin SVM will work, it still often makes sense to use the
soft margin SVM to avoid overfitting. We will discuss this below.
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2. Explain geometrically what the following optimization problem computes:

minimizew,a,ξ
1
n

∑n
i=1 ξi

subject to yi(w
Txi + a) ≥ 1− ξi for all i

‖w‖22 ≤ r2

ξi ≥ 0 for all i.

Solution. Minimizes the average slack over all decision functions where the geometric
margin is at least 1/r.

By dividing the soft margin objective by C and writing λ = 1/C we obtain the equivalent
minimization problem

minimizew,a,ξ λ‖w‖22 + 1
n

∑n
i=1 ξi

subject to yi(w
Txi + a) ≥ 1− ξi for all i

ξi ≥ 0 for all i.

This has the form of a regularized objective where the average slack is the loss and λ‖w‖22
is the L2 regularization. By choosing λ we determine the trade-off between minimizing
the slack of the violations, while keeping the other points at a reasonable margin from the
decision boundary. As with linear regression, there is an equivalent Ivanov formulation:

minimizew,a,ξ
1
n

∑n
i=1 ξi

subject to yi(w
Txi + a) ≥ 1− ξi for all i

‖w‖22 ≤ r2

ξi ≥ 0 for all i.

Recall that the geometric margin is 1/‖w‖2. Thus the Ivanov regularized problem is to
minimize the average slack, but only among classifiers that have a margin of at least 1/r.
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Figure 10: Optimize Over Cases Where Margin Is At Least 1/r

To see the value of regularization, consider the following examples.
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Almost no margin

Figure 11: Overfitting: Tight Margin With No Misclassifications

Large margin

Figure 12: Training Error But Large Margin

Although the first figure above has no misclassifications on the training set, it has an
incredibly small geometric margin. As a result, we may be willing to suffer a single training
mistake in return for a large buffer region for most training examples. Note that the the
data here was linearly separable, but we still may prefer the soft margin SVM. By using
cross-validation we can use data to find the correct tradeoff.
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