
Machine Learning – Brett Bernstein

Recitation 9: Gradient Boosting

Intro Question

1. Suppose 10 different meteorologists have produced functions f1, . . . , f10 : Rd → R that
forecast tomorrow’s noon-time temperature using the same d features. Given 1000
past data points (xi, yi) ∈ Rd × R of similar forecast situations, describe a method to
forecast tomorrow’s noon-time temperature.

Review of AdaBoost

Assume we have access to a learning algorithm that, given a datasetD = {(x1, y1), . . . , (xn, yn)},
and a weighting w1, . . . , wn > 0 will produce a decision function f such that

1

n

n∑
i=1

wi 1(f(xi) 6= yi) < γ ≤ 0.5.

We want to use this learning algorithm to build an aggregate classifier of the form

G(x) = sgn

(
M∑
m=1

αmGm

)
.

AdaBoost is a method for doing this, that fits each successive Gm by reweighting the training
examples according to the misclassifications of Gm−1. AdaBoost is is an example of the more
general class of additive models.

Additive Modeling

Additive models over a base hypothesis space H take the form

F = {f(x) =
M∑
m=1

νmhm(x) | hm ∈ H, νm ∈ R}.

Since we are taking linear combinations, we assume the hm functions take values in R or
some other vector space. Empirical risk minimization over F tries to find

arg min
f∈F

1

n

n∑
i=1

`(yi, f(xi)).

This in general is a difficult task, as the number of base hypotheses M is unknown, and
each base hypothesis hm ranges over all of H. One approach to fitting additive models is to
proceed stagewise in a greedy fashion.

1

Forward Stagewise Additive Modeling (FSAM)

The FSAM method fits additive models using the following algorithmic structure:

1. Initialize f0 ≡ 0.

2. For stage m = 1, 2, . . .:

(a) Choose hm ∈ H and νm ∈ R so that

fm = fm−1 + νmhm

has the minimum empirical risk.

(b) The function fm has the form

fm = ν1h1 + · · ·+ νmhm.

When choosing hm, νm during stage m, we must solve the minimization

(νm, hm) = arg min
ν∈R,h∈H

n∑
i=1

`(yi, fm−1(xi) + νh(xi)).

Depending on the base hypothesis space H and loss function `, this can be a difficult task.
The approach we discuss next will leverage the optimization/calculus skills we have used
throughout the class.

Gradient Boosting

Instead of determining how to find the optimal (ν, h) pair, we solve an easier local problem
using derivatives. We can look at the equation

fm(x) = fm−1(x) + νmhm(x)

as starting from the function fm−1 and taking a step in the direction hm with step length νm.
We are looking for a step that will minimize the objective

`(y1, fm−1(x1) + νmhm(x1)) + · · ·+ `(y1, fm−1(xn) + νmhm(xn)).

Suppose that instead of using a base classifier hm, we are allowed to take a small step in a
direction d ∈ Rn:

J(d) = `(y1, fm−1(x1) + d1) + · · ·+ `(y1, fm−1(xn) + dn).

Which direction d gives us the steepest descent? The solution is the negative gradient (or
negative subgradient where not differentiable)

−∇dJ(0) = −(∂2`(y1, fm−1(x1)), . . . , ∂2`(yn, fm−1(xn)))T .

2

This vector is sometimes called the pseudoresidual. Here ∂2 means to take the partial deriva-
tive of ` with respect to its second argument. This is sometimes written as

∂

∂f(xi)

n∑
i=1

`(yi, f(xi))

∣∣∣∣∣
f(xi)=fm−1(xi)

.

While the negative gradient does give us the steepest descent, it may not correspond to a
base hypothesis. To address this, our next step is to find the base hypothesis that is closest
to the negative gradient. This is done by solving the following minimization problem

hm := arg min
h∈H

(−∂2`(y1, fm−1(x1))− h(x1))
2 + · · ·+ (−∂2`(yn, fm−1(xn))− h(xn))2.

In words, we must find the base hypothesis h ∈ H whose values on the data are closest to
the pseudoresidual vector (in Euclidean distance). Suppose we have a learning algorithm
that given a dataset will (approximately) determine the ERM for the square loss. We can
then create a mock dataset

D(m) = {(x1,−∂2`(y1, fm−1(x1))), . . . , (xn,−∂2`(yn, fm−1(xn)))}

and feed it into our learning algorithm. The output of the learning algorithm will be the hm
we desired above.

Once we know hm, the step length νm can be determined in several ways:

1. Perform a line search:

νm := arg min
ν

n∑
i=1

`(fm−1(xi), νhm(xi)).

2. Used a fixed constant νm ∈ (0, 1). The value 0.1 is typical, but this value can be
optimized as a hyperparameter via validation.

The algorithm explained above is sometimes called functional gradient descent or any-
boost. The most commonly used base hypothesis space for gradient boosting is small regres-
sion trees (HTF recommend between 4 and 8 leaves).

Examples of Gradient Boosting

Example 1 (Using `(y, a) = (y − a)2/2). To compute an arbitrary pseudoresidual we first
note that

∂a(y − a)2/2 = −(y − a)

giving
−∂2`(yi, fm−1(xi)) = (yi − fm−1(xi)).

In words, for the square loss, the pseudoresiduals are simply the residuals from the previous
stage’s fit. Thus, in stage m our step direction hm is given by solving

hm := arg min
h∈H

n∑
i=1

((yi − fm−1(xi))− h(xi))
2.

3

Example 2 (Using `(y, a) = |y − a|). Note that

∂a|y − a| = − sgn(y − a)

giving
−∂2`(yi, fm−1(xi)) = sgn(yi − fm−1(xi)).

The absolute loss only cares about the sign of the residual from the previous stage’s fit.
Thus, in stage m our step direction hm is given by solving

hm := arg min
h∈H

n∑
i=1

(sgn(yi − fm−1(xi))− h(xi))
2.

Example 3 (Using `(y, a) = e−ya). Note that

∂ae
−ya = −ye−ya

giving
−∂2`(yi, fm−1(xi)) = yie

−yifm−1(xi).

Thus, in stage m our step direction hm is given by solving

hm := arg min
h∈H

n∑
i=1

(yie
−yifm−1(xi) − h(xi))

2.

As an aside, we will now sketch an argument that shows that if we have learners in
the sense of AdaBoost (i.e., they produce classification functions that minimize a weighted
0 − 1 loss), we can use them with GBM and the exponential loss to recover the AdaBoost
algorithm. Let

~r =
(
yie
−yifm−1(xi)

)n
i=1

and ~h = (h(xi))
n
i=1.

Then we have
hm = arg min

h∈H
‖~r − ~h‖22 = ‖~r‖22 + ‖~h‖22 − 2〈~r,~h〉.

Note that ~h ∈ {−1, 1}n so ‖~h‖22 = n, i.e., a constant. Thus this minimization is equivalent
to

arg max
h∈H

〈~r,~h〉.

Plugging in, we have

hm = arg max
h∈H

n∑
i=1

h(xi)yie
−yifm−1(xi).

Note that
h(xi)yi = 1− 2 · 1(h(xi) 6= yi)

4

so

hm = arg max
h∈H

n∑
i=1

e−yifm−1(xi) − 2
n∑
i=1

e−yifm−1(xi) 1(h(xi) 6= yi)

= arg min
h∈H

n∑
i=1

e−yifm−1(xi) 1(h(xi) 6= yi).

Thus we see that hm minimizes a weighted 0− 1 loss. The weights are

e−yifm−1(xi) = e−yi(
∑m−1

i=1 νihi(xi)) =
m−1∏
i=1

e−yiνihi(xi) =
m−1∏
i=1

e−νi(1−21(hi(xi)6=yi)).

By solving for the optimal step size νm it can be shown (we omit this) that the resulting
function fm is the same as produced by AdaBoost.

Next we apply GBM to square loss and absolute loss on a simple 1-d data set. We use
decision stumps as our base hypothesis space. Run gbm.py to see the output.

5

