Conditional Probability Models

David Rosenberg

New York University

April 5, 2017
Maximum Likelihood Recap
Maximum Likelihood Estimation

Suppose we have a parametric model \(\{ p(y; \theta) \mid \theta \in \Theta \} \) and a sample \(\mathcal{D} = \{ y_1, \ldots, y_n \} \).

Definition

The maximum likelihood estimator (MLE) for \(\theta \) in the model \(\{ p(y, \theta) \mid \theta \in \Theta \} \) is

\[
\hat{\theta} = \arg \max_{\theta \in \Theta} L_\mathcal{D}(\theta) = \arg \max_{\theta \in \Theta} \prod_{i=1}^{n} p(y_i; \theta).
\]

In practice, we prefer to work with the log likelihood. Same maximum but

\[
\log p(\mathcal{D}; \theta) = \sum_{i=1}^{n} \log p(y_i; \theta),
\]

and sums are easier to work with than products.
Maximum Likelihood Estimation

- Finding the MLE is an optimization problem.
- For some model families, calculus gives closed form for MLE.
- Can also use numerical methods we know (e.g. SGD).
- Note: In certain situations, the MLE may not exist.
 - But there is usually a good reason for this.
- e.g. Gaussian family $\{N(\mu, \sigma^2 \mid \mu \in \mathbb{R}, \sigma^2 > 0]\}$, Single observation y.
 - Take $\mu = y$ and $\sigma^2 \to 0$ drives likelihood to infinity. MLE doesn’t exist.
Bernoulli Regression
Bernoulli Regression

Probabilistic Binary Classifiers

- Setting: $X = \mathbb{R}^d$, $Y = \{0, 1\}$
- For each x, need to predict a distribution on $Y = \{0, 1\}$.
- What kind of parametric distribution could be supported on $\{0, 1\}$?
- Not a lot of choices....
- Bernoulli!
- For each x,
 - predict the Bernoulli parameter $\theta = p(y = 1 \mid x)$.
Linear Probabilistic Classifiers

- **Setting**: $X = \mathbb{R}^d$, $Y = \{0, 1\}$
- **Want prediction function** $x \mapsto \theta = p(y = 1 \mid x)$.
- **We need** $\theta \in [0, 1]$.
- **For a “linear method”**, we can write this in two steps:

$$
\begin{align*}
 x &\in \mathbb{R}^d \\
 w^T x &\in \mathbb{R} \\
 f(w^T x) &\in [0, 1]
\end{align*}
$$

where $f : \mathbb{R} \rightarrow [0, 1]$ is called the **transfer** or **inverse link** function.
- **Probability model** is then

$$
p(y = 1 \mid x) = f(w^T x)
$$
Inverse Link Functions

- Two commonly used “inverse link” functions to map from $w^T x$ to θ:

- Logistic function \Rightarrow Logistic Regression
- Normal CDF \Rightarrow Probit Regression
Learning

- $\mathcal{X} = \mathbb{R}^d$
- $\mathcal{Y} = \{0, 1\}$
- $\mathcal{A} = \{0, 1\}$ (Representing Bernoulli(θ) distributions by $\theta \in [0, 1]$)
- $\mathcal{H} = \{ x \mapsto f(w^T x) | w \in \mathbb{R}^d \}$
- We can choose w using maximum likelihood...
Bernoulli Regression: Likelihood Scoring

- Suppose we have data \(D = \{(x_1, y_1), \ldots, (x_n, y_n)\}, \text{ iid.} \)
- Compute the model likelihood for \(D \):

\[
p_w(D) = \prod_{i=1}^{n} p_w(y_i \mid x_i) \quad [\text{by independence}]
= \prod_{i=1}^{n} \left[f(w^T x_i) \right]^{y_i} \left[1 - f(w^T x_i) \right]^{1-y_i}.
\]

- Huh? Remember \(y_i \in \{0, 1\} \).
- Easier to work with the log-likelihood:

\[
\log p_w(D) = \sum_{i=1}^{n} y_i \log f(w^T x_i) + (1 - y_i) \log \left[1 - f(w^T x_i) \right]
\]
Bernoulli Regression: MLE

- Maximum Likelihood Estimation (MLE) finds w maximizing $\log p_w(D)$.
- Equivalently, minimize the objective function

$$J(w) = -\left[\sum_{i=1}^{n} y_i \log f(w^T x_i) + (1 - y_i) \log [1 - f(w^T x_i)] \right]$$

- For differentiable f,
 - $J(w)$ is differentiable, and we can use our standard tools.
- Homework: Derive the SGD step directions for logistic regression.
Multinomial Logistic Regression
Multinomial Logistic Regression

- Setting: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{1, \ldots, k\}$
- The numbers $(\theta_1, \ldots, \theta_k)$ where $\sum_{c=1}^k \theta_c = 1$ represent a “multinoulli” or “categorical” distribution.
- For each x, we want to produce a distribution on the k classes.
- That is, for each x and each $y \in \{1, \ldots, y\}$, we want to produce a probability

$$p(y \mid x) = \theta_y,$$

where $\sum_{y=1}^K \theta_y = 1$.
Multinomial Logistic Regression: Classic Setup

- From each x, we compute a linear score function for each class:
 $$x \mapsto (\langle w_1, x \rangle, \ldots, \langle w_k, x \rangle) \in \mathbb{R}^k$$

- We need to map this \mathbb{R}^k vector into a probability vector.

- Use the **softmax function**:
 $$(\langle w_1, x \rangle, \ldots, \langle w_k, x \rangle) \mapsto \left(\frac{\exp(w_1^T x)}{\sum_{c=1}^{K} \exp(w_c^T x)}, \ldots, \frac{\exp(w_k^T x)}{\sum_{c=1}^{K} \exp(w_c^T x)} \right)$$

- If $\theta \in \mathbb{R}^k$ is the output of the softmax, note that
 $$\theta_i > 0$$
 $$\sum_{i=1}^{k} \theta_i = 1$$
Multinomial Logistic Regression: Classic Setup

- Putting this together, we write multinomial logistic regression as

\[
p(y \mid x) = \frac{\exp(w_y^T x)}{\sum_{c=1}^{K} \exp(w_c^T x)},
\]

where we’ve introduced parameter vectors \(w_1, \ldots, w_k \in \mathbb{R}^d \).

- Can view \(x \mapsto w_y^T x \) as the score for class \(y \), for \(y \in \{1, \ldots, k\} \).

- We can also “flatten” this as we did for multiclass classification.
 - Introduce a class-sensitive feature vector \(\Psi(x, y) \in \mathbb{R}^{dk} \)
 - Parameter vector \(w \in \mathbb{R}^{dk} \).

- The log of this likelihood is concave and straightforward to optimize.
Poisson Regression
Poisson Regression: Setup

- Input space $\mathcal{X} = \mathbb{R}^d$, Output space $\mathcal{Y} = \{0, 1, 2, 3, 4, \ldots\}$

- Hypothesis space consists of functions $f : x \mapsto \text{Poisson}(\lambda(x))$.
 - That is, for each x, $f(x)$ returns a Poisson with mean $\lambda(x) \in (0, \infty)$.
 - What function?

- Recall $\lambda > 0$.

- In Poisson regression, x enters \textbf{linearly}: $x \mapsto w^T x \mapsto \lambda = f(w^T x)$.

- Standard approach is to take
 \[\lambda(x) = \exp(w^T x), \]
 for some parameter vector w.

- Note that range of $\lambda(x) = (0, \infty)$, (appropriate for the Poisson parameter).
Suppose we have data \(D = \{(x_1, y_1), \ldots, (x_n, y_n)\} \).

Recall the log-likelihood for Poisson is:

\[
\log p(D, \lambda) = \sum_{i=1}^{n} \left[y_i \log \lambda - \lambda - \log(y_i!) \right]
\]

Plugging in \(\lambda(x) = \exp(w^T x) \), we get

\[
\log p(D, \lambda) = \sum_{i=1}^{n} \left[y_i \log \left(\exp(w^T x_i)\right) - \exp(w^T x_i) - \log(y_i!) \right]
\]

\[
= \sum_{i=1}^{n} \left[y_i w^T x_i - \exp(w^T x_i) - \log(y_i!) \right]
\]

Maximize this w.r.t. \(w \) to find the Poisson regression.

No closed form for optimum, but it’s concave, so easy to optimize.
Poisson Regression Example

e.g. Phone call counts per day for a startup company over 300 days.
What About Nonlinear Score Functions
Poisson Count Example

\[y = f(x) \]

David Rosenberg (New York University)
Let’s Use Gradient Boosting

- Recall the log-likelihood for Poisson regression

\[\log p(\mathcal{D}, \lambda) = \sum_{i=1}^{n} [y_i w^T x_i - \exp(w^T x_i) - \log(y_i!)] \]

- Let’s replace \(w^T x \) by a general function \(f(x) \):

\[J(f) = \sum_{i=1}^{n} [y_i f(x_i) - \exp(f(x_i)) - \log(y_i!)] \]
Generalized Regression
Generalized Regression as Statistical Learning

- **Input space** \mathcal{X}
- **Output space** \mathcal{Y}
- All pairs (x, y) are independent with distribution $P_{\mathcal{X} \times \mathcal{Y}}$.
- **Action space** $\mathcal{A} = \{p(y) \mid p \text{ is a probability density or mass function on } \mathcal{Y}\}$.
- Hypothesis spaces contain decision functions $f : \mathcal{X} \rightarrow \mathcal{A}$.
 - Given an $x \in \mathcal{X}$, predict a probability distribution $p(y)$ on \mathcal{Y}.

Hypothesis spaces contain decision functions $f : X \rightarrow A$.
- Given an $x \in X$, predict a probability distribution $p(y)$ on Y.

Let f be a decision function.
- In regression, $f(x) \in \mathbb{R}$
- In hard classification, $f(x) \in \{-1, 1\}$
- For generalized regression, $f(x) \in \mathbb{R}$?

$f(x)$ is a PDF or PMF on Y.
- If $p = f(x)$, can evaluate $p(y)$ for predicted probability of y.
- Or just write $[f(x)](y)$ or even $f(x)(y)$.

A Note on Notation
Generalized Regression as Statistical Learning

- The risk of decision function \(f : \mathcal{X} \rightarrow \mathcal{A} \)

\[
R(f) = -\mathbb{E}_{x,y} \log[f(x)](y),
\]

where \(f(x) \) is a PDF or PMF on \(\mathcal{Y} \), and we’re evaluating it on \(\mathcal{Y} \).

- The empirical risk of \(f \) for a sample \(D = \{y_1, \ldots, y_n\} \in \mathcal{Y} \) is

\[
\hat{R}(f) = -\sum_{i=1}^{n} \log[f(x_i)](y_i).
\]

This is called the negative conditional log-likelihood.
How General A Distribution Can We Use?
Can't use it in GBM: likelihood not differentiable (not continuous).

Uniform Example?