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Bayesian Statistics: Recap

The Bayesian Method

1 Define the model:
Choose a probability model or “ likelihood model”:

{p(D | θ) | θ ∈Θ} .

Choose a distribution p(θ), called the prior distribution.
2 After observing D, compute the posterior distribution p(θ | D).
3 Choose action based on p(θ | D).

e.g. E [θ | D] as point estimate for θ
e.g. interval [a,b], where p(θ ∈ [a,b] | D) = 0.95
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Bayesian Statistics: Recap

The Posterior Distribution

By Bayes rule, can write the posterior distribution as

p(θ | D) =
p(D | θ)p(θ)

p(D)
.

likelihood: p(D | θ)

prior: p(θ)

marginal likelihood: p(D).
Note: p(D) is just a normalizing constant for p(θ | D). Can write

p(θ | D)︸ ︷︷ ︸
posterior

∝ p(D | θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

.

David Rosenberg (New York University) DS-GA 1003 April 11, 2017 4 / 25



Bayesian Statistics: Recap

Summary

Prior represents belief about θ before observing data D.

Posterior represents the rationally “updated” beliefs after seeing D.

All inferences and action-taking are based on posterior distribution.
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Bayesian Gaussian Linear Regression

Bayesian Conditional Models

Input space X= Rd Output space Y= R

Conditional probability model, or likelihood model:

{p(y | x ,θ) | θ ∈Θ}

Conditional here refers to the conditioning on the input x .

x ’s are not governed by our probability model.

Everything conditioned on x means “x is known”

Prior distribution: p(θ) on θ ∈Θ
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Bayesian Gaussian Linear Regression

Gaussian Regression Model

Input space X= Rd Output space Y= R
Conditional probability model, or likelihood model:

y | x ,w ∼ N
(
wT x ,σ2) ,

for some known σ2 > 0.
Parameter space? Rd .
Data: D= {(x1,y1), . . . ,(xn,yn)}

Notation: y = (y1, . . . ,yn) and x = (x1, . . . ,xn).

Assume yi ’s are conditionally independent, given x and w .
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Bayesian Gaussian Linear Regression

Conditional Independence (Review)

Definition
We say W and S are conditionally independent given R , denoted

W ⊥ S | R,

if the conditional joint factorizes as

p(w ,s | r) = p(w | r)p(s | r).

Also holds when W , S , and R represent sets of random variables.

Can have conditional independence without independence.

Can have independence without conditional independence.
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Bayesian Gaussian Linear Regression

Gaussian Likelihood and MLE

The likelihood of w ∈ Rd for the data D is

p(y | x ,w) =

n∏
i=1

p(yi | xi ,w) by conditional independence.

=

n∏
i=1

[
1

σ
√
2π

exp
(
−
(yi −wT xi )

2

2σ2

)]
You should see in your head1 that the MLE is

w∗MLE = argmax
w∈Rd

p(y | x ,w)

= argmin
w∈Rd

n∑
i=1

(yi −wT xi )
2.

1See https://davidrosenberg.github.io/ml2015/docs/8.Lab.glm.pdf, slide 5.
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Bayesian Gaussian Linear Regression

Priors and Posteriors

Choose a Gaussian prior distribution p(w) on Rd :

w ∼ N (0,Σ0)

for some covariance matrix Σ0 � 0 (i.e. Σ0 is spd).
Posterior distribution

p(w | D) = p(w | x ,y)

= p (y | x ,w)p(w)/p(y | x)

∝ p(y | x ,w)p(w)

=

n∏
i=1

[
1

σ
√
2π

exp
(
−
(yi −wT xi )

2

2σ2

)]
(likelihood)

× |2πΣ0|
−1/2 exp

(
−
1
2
wTΣ−1

0 w)

)
(prior)
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Bayesian Gaussian Linear Regression

Predictive Distributions

Likelihood model: y | x ,w ∼ N
(
wT x ,σ2

)
If we knew w , best prediction function (for square loss) is

ŷ(x) = E [y | x ,w ] = wT x .

In Bayesian statistics we have
Prior distribution: w ∼ N (0,Σ0), and
Given data, we can compute the posterior distribution: p(w | D).

Prior p(w) and posterior p(w | D) give distributions over prediction functions.
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Gaussian Regression Example

Gaussian Regression Example

David Rosenberg (New York University) DS-GA 1003 April 11, 2017 13 / 25



Gaussian Regression Example

Example in 1-Dimension: Setup

Input space X= [−1,1] Output space Y= R
Given x , the world generates y as

y = w0+w1x +ε,

where ε ∼ N(0,0.22).
Written another way, the likelihood model is

y | x ,w0,w1 ∼ N
(
w0+w1x , 0.22) .

What’s the parameter space? R2.
Prior distribution: w = (w0,w1) ∼ N

(
0, 1

2 I
)
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Gaussian Regression Example

Example in 1-Dimension: Prior Situation

Prior distribution: w = (w0,w1) ∼ N
(
0, 1

2 I
)
(Illustrated on left)

On right, y(x) = E [y | x ,w ] = w0+w1x , for randomly chosen w ∼ p(w) =N
(
0, 1

2 I
)
.

Bishop’s PRML Fig 3.7
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Gaussian Regression Example

Example in 1-Dimension: 1 Observation

On left: posterior distribution; white ’+’ indicates true parameters
On right: blue circle indicates the training observation

Bishop’s PRML Fig 3.7
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Gaussian Regression Example

Example in 1-Dimension: 2 and 20 Observations

Bishop’s PRML Fig 3.7
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Gaussian Regression Continued

Gaussian Regression Continued
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Gaussian Regression Continued

Closed Form for Posterior

Model:

w ∼ N (0,Σ0)

yi | x ,w i.i.d. N(wT xi ,σ
2)

Design matrix X ; Response column vector y
Posterior distribution is a Gaussian distribution:

w | D ∼ N(µP ,ΣP)

µP =
(
XTX +σ2Σ−1

0
)−1

XT y

ΣP =
(
σ−2XTX +Σ−1

0
)−1

Posterior Variance ΣP gives us a natural uncertainty measure.
See Rasmussen and Williams’ Gaussian Processes for Machine Learning, Ch 2.1. http://www.gaussianprocess.org/gpml/chapters/RW2.pdf
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Gaussian Regression Continued

Closed Form for Posterior

Posterior distribution is a Gaussian distribution:

w | D ∼ N(µP ,ΣP)

µP =
(
XTX +σ2Σ−1

0
)−1

XT y

ΣP =
(
σ−2XTX +Σ−1

0
)−1

The MAP estimator and the posterior mean are given by

µP =
(
XTX +σ2Σ−1

0
)−1

XT y

For the prior variance Σ0 =
σ2

λ I , we get

µP =
(
XTX +λI

)−1
XT y ,

which is of course the ridge regression solution.
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Gaussian Regression Continued

Posterior Variance vs. Traditional Uncertainty

Traditional regression: OLS estimator (also the MLE) is a random variable – why?
Because estimator is a function of data D and data is random.

Common assumption: data are iid with Gaussian noise: y = wT x +ε, with ε ∼ N
(
0,σ2

)
.

Then OLS estimator ŵ has a sampling distribution that is Gaussian with mean w and

Cov(ŵ) =
(
σ−2XTX

)−1

By comparison, the posterior variance is

ΣP =
(
σ−2XTX +Σ−1

0
)−1

.

When we take Σ−1
0 = 0, we get back Cov(θ̂) (i.e. like our prior variance goes to ∞. )

ΣP is “smaller” than Cov(ŵ) because we’re using a “more informative” prior.
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Gaussian Regression Continued

Posterior Mean and Posterior Mode (MAP)

Posterior density for Σ0 =
σ2

λ I :

p(w | D) ∝ exp
(
−
λ

2σ2 ‖w‖
2
)

︸ ︷︷ ︸
prior

n∏
i=1

exp
(
−
(yi −wT xi )

2

2σ2

)
︸ ︷︷ ︸

likelihood

To find MAP, sufficient to minimize the negative log posterior:

ŵMAP = argmin
w∈Rd

[− logp(w | D)]

= argmin
w∈Rd

n∑
i=1

(yi −wT xi )
2

︸ ︷︷ ︸
log-likelihood

+λ‖w‖2︸ ︷︷ ︸
log-prior

Which is the ridge regression objective.
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Gaussian Regression Continued

Predictive Distribution

Given a new input point xnew, how to predict ynew ?
Predictive distribution

p(ynew | xnew,D) =

∫
p(ynew | xnew,w ,D)p(w | D)dw

=

∫
p(ynew | xnew,w)p(w | D)dw

For Gaussian regression, predictive distribution has closed form.
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Gaussian Regression Continued

Closed Form for Predictive Distribution

Model:

w ∼ N (0,Σ0)

yi | x ,w i.i.d. N(wT xi ,σ
2)

Predictive Distribution

p(ynew | xnew,D) =

∫
p(ynew | xnew,w)p(w | D)dw .

Averages over prediction for each w , weighted by posterior distribution.

Closed form:

ynew | xnew,D ∼ N (ηnew , σnew)

ηnew = µTP xnew

σnew = xTnewΣPxnew︸ ︷︷ ︸
from variance in w

+ σ2︸︷︷︸
inherent variance in y
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Gaussian Regression Continued

Predictive Distributions

With predictive distributions, can give mean prediction with error bands:

Rasmussen and Williams’ Gaussian Processes for Machine Learning, Fig.2.1(b)
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