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The Bayesian Method

@ Define the model:
o Choose a probability model or “likelihood model™:

{p(D16)]6 €O}

o Choose a distribution p(0), called the prior distribution.
@ After observing D, compute the posterior distribution p(6 | D).
© Choose action based on p(6 | D).

o e.g. E[0| D] as point estimate for 0
e e.g. interval [a, b], where p(0 € [a,b] | D) =0.95
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The Posterior Distribution

@ By Bayes rule, can write the posterior distribution as

p(D| 9)p(9)_

p(0|D) = (D)

likelihood: p(D | 0)

prior: p(0)
marginal likelihood: p(D).

Note: p(D) is just a normalizing constant for p(0 | D). Can write

p(0 D) ocp(D[0)p(0).
—_— YY"

posterior likelihood prior
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Bayesian Statistics: Recap

Summary

@ Prior represents belief about 0 before observing data D.

@ Posterior represents the rationally “updated” beliefs after seeing D.

@ All inferences and action-taking are based on posterior distribution.
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Bayesian Conditional Models

Input space X = R Output space Yy =R
e Conditional probability model, or likelihood model:

{plyx,0)]6 €6}

Conditional here refers to the conditioning on the input x.

e x's are not governed by our probability model.

e Everything conditioned on x means “x is known"

Prior distribution: p(0) on 6 € ©
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Bayesian Gaussian Linear Regression

Gaussian Regression Model

e Input space X =R¢ Output space Yy =R

o Conditional probability model, or likelihood model:

ylx,w ~ N(WTX,O'z),

for some known o2 > 0.

o Parameter space? RY.

o Data: D:{(le)’l):---x(xn:)/n)}
o Notation: y = (y1,..., yn) and x = (xq,..., Xp).

o Assume y;'s are conditionally independent, given x and w.
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Bayesian Gaussian Linear Regression

Conditional Independence (Review)

Definition
We say W and S are conditionally independent given R, denoted
W1S|R,

if the conditional joint factorizes as

plw,s|r)=p(wlr)p(s|r).

Also holds when W, S, and R represent sets of random variables.

@ Can have conditional independence without independence.

@ Can have independence without conditional independence.

David Rosenberg (New York University) DS-GA 1003 April 11, 2017

9/ 25



Gaussian Likelihood and MLE

@ The likelihood of w € R for the data D is

n
plylx,w) = Hp(y,- | x;, w) by conditional independence.

_ " 1 (yi—wTx)?
- fomee (5]

i=1

@ You should see in your head! that the MLE is

*
wuLe = argmaxp(y |x,w)
weERd
= argmmZ —w'x)?

WGRd i=1

1See https://davidrosenberg.github.io/m12015/docs/8.Lab.glm. pdf, slide 5.
T T TS


https://davidrosenberg.github.io/ml2015/docs/8.Lab.glm.pdf

Bayesian Gaussian Linear Regression

Priors and Posteriors

e Choose a Gaussian prior distribution p(w) on RY:
w~N(0,Zp)

for some covariance matrix Ly > 0 (i.e. Xg is spd).
o Posterior distribution

pw|D) = pwlxy)
= plylx,w)p(w)/ply|x)
o< plylx,w)p(w)

N H[lzex" (‘W)] (likelihood)
i=1 0 T

1
x |27tEo| /2 exp <2WTZO_1W)> (prior)
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Bayesian Gaussian Linear Regression

Predictive Distributions

Likelihood model: y [ x,w ~N (w'x, ¢?)

If we knew w, best prediction function (for square loss) is

y(x)=Ely|x,wl=w'x.

@ In Bayesian statistics we have
e Prior distribution: w ~N(0,X%,), and
o Given data, we can compute the posterior distribution: p(w | D).

Prior p(w) and posterior p(w | D) give distributions over prediction functions.
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Gaussian Regression Example

Example in 1-Dimension: Setup

Input space X =[—1,1] Output space Y =R

Given x, the world generates y as
Yy=wp+wix+eg,

where € ~N(0,0.22).

Written another way, the likelihood model is

What's the parameter space? RZ.
Prior distribution: w = (wo, wi) ~ N (0,3/)
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Gaussian Regression Example

Example in 1-Dimension: Prior Situation

e Prior distribution: w = (wo, w1) ~ N (0,3/) (lllustrated on left)

prior/posterior data space
Y
0
-1
-1 0 qp 1 -1 0 x 1

@ On right, y(x) =El[y | x, w] = wg + wy x, for randomly chosen w ~ p(w) = N(O, %I)

Bishop’'s PRML Fig 3.7
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Gaussian Regression Example

Example in 1-Dimension: 1 Observation

1 1
w1 Y
0 0
-1 -1
-1 0 qg 1 -1 0 z 1

@ On left: posterior distribution; white '+ indicates true parameters

@ On right: blue circle indicates the training observation

Bishop’'s PRML Fig 3.7
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Gaussian Regression Example

Example in 1-Dimension: 2 and 20 Observations

1
w1y Y
0 (o)
-1 -1
-1 0 =z 1
1
w1y Y
0 o g%
(o]
o ©
-1 -1
-1 0 = 1

Bishop’'s PRML Fig 3.7
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Gaussian Regression Continued

Closed Form for Posterior

o Model:

@ Design matrix X;

w

~  N(0,%o)

yilx,w iid. N(w'x;, 0?)

Response column vector y

o Posterior distribution is a Gaussian distribution:

@ Posterior Variance Lp gives us a natural uncertainty measure.

w|D
up
p

~

N(up,Zp)
(XTX+0255) ' XTy
(0 2XTX+1H) "

See Rasmussen and Williams' Gaussian Processes for Machine Learning, Ch 2.1. http://www.gaussianprocess.org/gpml/chapters/RW2.pdf
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Gaussian Regression Continued

Closed Form for Posterior

o Posterior distribution is a Gaussian distribution:
w|D ~ N(up,Zp)
wp = (XTX+025h) ' xTy
T = (0 2XTX+1h)

@ The MAP estimator and the posterior mean are given by

up = (XTX+0255) ' XTy

@ For the prior variance Xg = 672l, we get
—1
wp = (XTX+A) "Xy,

which is of course the ridge regression solution.
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Gaussian Regression Continued

Posterior Variance vs. Traditional Uncertainty

e Traditional regression: OLS estimator (also the MLE) is a random variable — why?

e Because estimator is a function of data D and data is random.

e Common assumption: data are iid with Gaussian noise: y = w'x+¢, with ¢ NN(O,GZ).

@ Then OLS estimator w has a sampling distribution that is Gaussian with mean w and
Cov(w) = (6 2XTX)

@ By comparison, the posterior variance is

Tp=(02XTX 415517

When we take Zal =0, we get back Cov(6) (i.e. like our prior variance goes to co. )

2 p is “smaller” than Cov (W) because we're using a “more informative” prior.
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Posterior Mean and Posterior Mode (MAP)

o Posterior density for Ly = ‘772/:

A )\ T (yi —wTx;)?
plwD) o exp (—omslwl?) T Teww (~ 2%

i=1

prior likelihood

e To find MAP, sufficient to minimize the negative log posterior:

wmap = argmin[—logp(w | D)]
weRd
n
= argmin Y (yi—w’x)?+A|wl?
~—

og-prior

log-likelihood
@ Which is the ridge regression objective.
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Predictive Distribution

@ Given a new input point Xnew, how to predict ynew ?
o Predictive distribution

P(Ynew | Xnew D) = JP(Ynew | Xnew, W, @)p(W | D) dw

= Jp()/new | Xnew, w)p(w | D) dw

@ For Gaussian regression, predictive distribution has closed form.
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Gaussian Regression Continued

Closed Form for Predictive Distribution

e Model:

o Predictive Distribution

p(}/new | Xnew D)

w ~ N(O,Zo)
yilx,w iid. N(w'x;, 0?)

_ Jp(ynew | Xoews W)p(w | D) dw.

o Averages over prediction for each w, weighted by posterior distribution.

o Closed form:

Ynew | Xnew, D
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Gnew

~

N (nner 0—new)
T
Hp Xnew
Tz
Xnew PXnew +
—_——

from variance in w
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Gaussian Regression Continued

Predictive Distributions

e With predictive distributions, can give mean prediction with error bands:

output, y
=

_5_. I
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