K-Means

David Rosenberg, Brett Bernstein

New York University

April 25, 2017
Intro Question
Consider the following probability model for generating data.

1. Roll a weighted k-sided die to choose a label $z \in \{1, \ldots, k\}$. Let π denote the PMF for the die.

2. Draw $x \in \mathbb{R}^d$ randomly from the multivariate normal distribution $\mathcal{N}(\mu_z, \Sigma_z)$.

Solve the following questions.

1. What is the joint distribution of x, z given π and the μ_z, Σ_z values?

2. Suppose you were given the dataset $\mathcal{D} = \{(x_1, z_1), \ldots, (x_n, z_n)\}$. How would you estimate the die weightings, and the μ_z, Σ_z values?

3. How would you determine the label for a new datapoint x?
1. The joint PDF/PMF is given by

\[p(x, z) = \pi(z)f(x; \mu_z, \Sigma_z) \]

where

\[f(x; \mu_z, \Sigma_z) = \frac{1}{\sqrt{|2\pi\Sigma_z|}} \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right). \]

2. We could use maximum likelihood estimation. Our estimates are

\[\hat{n}_z = \frac{1}{\sum_{i=1}^{n} 1(z_i = z)} \]
\[\hat{n}_z = \frac{n_z}{\sum_{i:z_i = z}} \]
\[\hat{\mu}_z = \frac{1}{n_z} \sum_{i:z_i = z} x_i \]
\[\hat{\Sigma}_z = \frac{1}{n_z} \sum_{i:z_i = z} (x_i - \hat{\mu}_z)(x_i - \hat{\mu}_z)^T. \]

3. \[\arg \max_z p(x, z) \]
K-Means Clustering
Example: Old Faithful Geyser

- Looks like two clusters.
- How to find these clusters algorithmically?
k-Means: By Example

- Standardize the data.
- Choose two cluster centers.

From Bishop's *Pattern recognition and machine learning*, Figure 9.1(a).
k-means: by example

- Assign each point to closest center.

*From Bishop's *Pattern recognition and machine learning*, Figure 9.1(b).*
k-means: by example

- Compute new class centers.

From Bishop's *Pattern recognition and machine learning*, Figure 9.1(c).
k-means: by example

- Assign points to closest center.

From Bishop's *Pattern recognition and machine learning*, Figure 9.1(d).
k-means: by example

- Compute cluster centers.

From Bishop's *Pattern recognition and machine learning*, Figure 9.1(e).
k-means: by example

- Iterate until convergence.

From Bishop's *Pattern recognition and machine learning*, Figure 9.1(i).
k-Means Algorithm: Standardizing the data

- Without standardizing:

<table>
<thead>
<tr>
<th>Duration (minutes)</th>
<th>Wait Time Since Last Eruption (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
</tr>
</tbody>
</table>

- Blue and black show results of k-means clustering
- Wait time dominates the distance metric
k-Means Algorithm: Standardizing the data

- With standardizing:

 ![Scatter plot of Old Faithful Geyser Eruptions with standardized data]

 - Note several points have been reassigned from black to blue cluster.
k-Means: Objective

- Let x_1, \ldots, x_n denote the data points and μ_1, \ldots, μ_k the cluster points.
- Define the objective ϕ by

$$\phi(x, \mu) = \sum_{i=1}^{n} \|x_i - \mu_{c(x_i)}\|_2^2,$$

where $\mu_{c(x_i)}$ is the cluster point associated to x_i.
- Then ϕ decreases at every round of k-means. Why?
- Selecting mean of all associated data points improves objective.
- Selecting closest cluster point for each data points improves objective.
k-Means: Failure Cases
The clustering for $k = 3$ below is a local minimum, but suboptimal:

Would be better to have one cluster here

... and two clusters here

k- Means++

- Improvement on k-means by controlling the random initialization of the cluster centers.
- Randomly choose first center amongst the data points.
- For each of the remaining $k-1$ centers:
 - Compute the distance from each data point to the closest already chosen center.
 - Randomly choose a point as the new center with probability proportional to its computed distance squared.
- If we let ϕ denote the total sum of squares distances from each point to the closest cluster, then k-means++ has

$$E[\phi] \leq 8(\log k + 2)\phi_{\text{OPT}},$$

where ϕ_{OPT} is from the optimal k-cluster assignment.