Gradient and Stochastic Gradient Descent

David Rosenberg

New York University

January 24, 2017
Unconstrained Optimization

Setting

Objective function $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable.
Want to find

$$x^* = \arg\min_{x \in \mathbb{R}^d} f(x)$$
The Gradient

- Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable at $x_0 \in \mathbb{R}^d$.

- The gradient of f at the point x_0, denoted $\nabla_x f(x_0)$, is the direction to move in for the fastest increase in $f(x)$, when starting from x_0.
Gradient Descent

- Initialize $x = 0$
- repeat
 - $x \leftarrow x - \eta \nabla f(x)$
 - step size
- until stopping criterion satisfied
Gradient Descent Path

Gradient Descent

- Fixed step size: 0.20
- Backtracking line search: initial step 0.30
Gradient Descent: Step Size

- A fixed step size will work, eventually, as long as it’s small enough.
 - Too fast, may diverge
 - In practice, try a several fixed step sizes

- Intuition on when to take big steps and when to take small steps?
 - (See instructor’s gradient descent dance.)

- Supporting theorems and more intuition to come in Week 4 Lab.
“Empirically $\eta = 0.1$ often works well” (says an ML textbook)

How can one rate work well for most functions?

Suppose $\eta = 0.1$ works well for $f(x)$, what about $g(x) = f(10x)$?

Another approach:
- Optimize step size at every step (e.g. backtracking line search)
- Will see this in homework #1.
Gradient Descent: When to Stop?

- Wait until $\|\nabla f(x)\|_2 \leq \varepsilon$, for some ε of your choosing.

 (Recall $\nabla f(x) = 0$ at minimum.)

- For learning setting,

 - test performance on validation data as you go
 - stop when not improving, or getting worse
Linear Least Squares Regression

Setup

- Input space $\mathcal{X} = \mathbb{R}^d$
- Output space $\mathcal{Y} = \mathbb{R}$
- Action space $\mathcal{Y} = \mathbb{R}$
- Loss: $\ell(\hat{y}, y) = \frac{1}{2} (y - \hat{y})^2$
- **Hypothesis space:** $\mathcal{F} = \{ f : \mathbb{R}^d \to \mathbb{R} \mid f(x) = w^T x, w \in \mathbb{R}^d \}$

Given data set $\mathcal{D}_n = \{(x_1, y_1), \ldots, (x_n, y_n)\}$,

- Let’s find the ERM $\hat{f} \in \mathcal{F}$.

Objective Function: Empirical Risk

The function we want to minimize is the empirical risk:

\[
\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2,
\]

where \(w \in \mathbb{R}^d \) parameterizes the hypothesis space \(\mathcal{F} \).

- Now let’s think more generally...
Suppose we have a hypothesis space of functions $\mathcal{F} = \{ f_w : \mathcal{X} \rightarrow \mathcal{A} \mid w \in \mathbb{R}^d \}$

- Parameterized by $w \in \mathbb{R}^d$.
- ERM is to find w minimizing

$$\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_w(x_i), y_i)$$

Suppose $\ell(f_w(x_i), y_i)$ is differentiable as a function of w.

Then we can do gradient descent on $\hat{R}_n(w)$...
At every iteration, we compute the gradient at current w:

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^{n} \nabla_w \ell(f_w(x_i), y_i)$$

- We have to touch all n training points to take a single step. [$O(n)$]
- Will this scale to “big data”?
- Can we make progress without looking at all the data?
"Noisy" Gradient Descent

- We know gradient descent works.
- But the gradient may be slow to compute.
- What if we just use an estimate of the gradient?
- Turns out that can work fine.

Intuition:
- Gradient descent is an interactive procedure anyway.
 - At every step, we have a chance to recover from previous missteps.
- Turns out, even terrible estimates will work, so long as they are *unbiased*. (Details in Week 4)
Minibatch Gradient

- The full gradient is

\[\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^{n} \nabla_w \ell(f_w(x_i), y_i) \]

- It’s an average over the full batch of data \(D_n = \{(x_1, y_1), \ldots, (x_n, y_n)\} \).

- Let’s take a subsample of size \(N \):

\((x_{m_1}, y_{m_1}), \ldots, (x_{m_N}, y_{m_N}) \)

- The minibatch gradient is

\[\nabla \hat{R}_N(w) = \frac{1}{N} \sum_{i=1}^{N} \nabla_w \ell(f_w(x_{m_i}), y_{m_i}) \]

- What can we say about the minibatch gradient?
Minibatch Gradient

What’s the expected value of the minibatch gradient?

\[
\mathbb{E} \left[\nabla \hat{R}_N(w) \right] = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\nabla_w \ell(f_w(x_{m_i}), y_{m_i}) \right]
\]
\[
= \mathbb{E} \left[\nabla_w \ell(f_w(x_{m_i}), y_{m_i}) \right]
\]
\[
= \sum_{i=1}^{n} \Pr(m_1 = i) \nabla_w \ell(f_w(x_i), y_i)
\]
\[
= \frac{1}{n} \sum_{i=1}^{n} \nabla_w \ell(f_w(x_{m_i}), y_{m_i})
\]
\[
= \nabla \hat{R}_n(w)
\]
Minibatch Gradient Properties

- Minibatch gradient is an **unbiased estimator** for the [full] batch gradient:

\[
\mathbb{E} \left[\nabla \hat{R}_N(w) \right] = \nabla \hat{R}_n(w)
\]

- The bigger the minibatch, the better the estimate.

- In fact, by Strong Law of Large Numbers, \(\lim_{N \to \infty} \nabla \hat{R}_N(w) = \nabla \hat{R}_n(w) \):

\[
\lim_{N \to \infty} \nabla \hat{R}_N(w) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \nabla_w \ell(f_w(x_{m_i}), y_{m_i})
= \mathbb{E} [\nabla_w \ell(f_w(x_{m_i}), y_{m_i})]
= \nabla \hat{R}_n(w)
\]
Minibatch Gradient – In Practice

- Tradeoffs of minibatch size:
 - Bigger $N \implies$ Better estimate of gradient, but slower (more data to touch)
 - Smaller $N \implies$ Worse estimate of gradient, but can be quite fast

- Even $N = 1$ works, it’s called **stochastic gradient descent (SGD)**.
Terminology Review

- **Gradient descent** or “batch” gradient descent
 - Use full data set of size n to determine step direction

- **Minibatch gradient descent**
 - Use a random subset of size N to determine step direction
 - Yoshua Bengio says1:
 - N is typically between 1 and few hundred
 - $N = 32$ is a good default value
 - With $N \geq 10$ we get computational speedup (per datum touched)

- **Stochastic gradient descent**
 - Minibatch with $m = 1$.
 - Use a single randomly chosen point to determine step direction.

1See Yoshua Bengio’s “Practical recommendations for gradient-based training of deep architectures”
Minibatch Gradient Descent (minibatch size N)

- initialize $w = 0$
- repeat
 - randomly choose N points $\{(x_i, y_i)\}_{i=1}^{N} \subset \mathcal{D}_n$
 - $w \leftarrow w - \eta \left[\frac{1}{N} \sum_{i=1}^{N} \nabla_w \ell(f_w(x_i), y_i) \right]$
- until stopping criteria met
Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent

- initialize $w = 0$
- repeat
 - randomly choose training point $(x_i, y_i) \in D_n$
 - $w \leftarrow w - \eta \nabla_w \ell(f_w(x_i), y_i)$
- until stopping criteria met

Grad(Loss on i’th example)
Step Size

- For SGD we want decreasing step size to dampen noise in step direction
- Let η_t be the step size at the t’th step.

Robbins-Monro Conditions

Many classical convergence results depend on the following two conditions:

$$\sum_{t=1}^{\infty} \eta_t^2 < \infty \quad \sum_{t=1}^{\infty} \eta_t = \infty$$

- As fast as $\eta_t = O\left(\frac{1}{t}\right)$ would satisfy this... but should be faster than $O\left(\frac{1}{\sqrt{t}}\right)$.
- A useful reference for practical techniques: Leon Bottou’s “Tricks”: