Loss Functions for Regression and Classification

David Rosenberg

New York University

July 26, 2017
Regression Loss Functions
Regession Loss Functions

Loss Functions for Regression

- In general, loss function may take the form

\[(\hat{y}, y) \mapsto \ell(\hat{y}, y) \in \mathbb{R}\]

- Regression losses usually only depend on the residual \(r = y - \hat{y} \).

- Loss \(\ell(\hat{y}, y) \) is called **distance-based** if it
 1. only depends on the residual:

\[\ell(\hat{y}, y) = \psi(y - \hat{y}) \quad \text{for some } \psi: \mathbb{R} \to \mathbb{R} \]

 2. loss is zero when residual is 0:

\[\psi(0) = 0 \]
Distance-Based Losses are Translation Invariant

- Distance-based losses are translation-invariant. That is,

\[\ell(\hat{y} + a, y + a) = \ell(\hat{y}, y). \]

- When might you not want to use a translation-invariant loss?

- e.g. Sometimes relative error is a more natural loss (but not translation-invariant)

- Often you can transform response \(y \) so it’s translation-invariant (e.g. log transform)
 - See homework or concept check questions.
Some Losses for Regression

- **Square** or ℓ_2 Loss: $\ell(r) = r^2$
- **Absolute** or **Laplace** or ℓ_1 Loss: $\ell(r) = |r|$

| y | \hat{y} | $|r| = |y - \hat{y}|$ | $r^2 = (y - \hat{y})^2$ |
|-----|-----|----------------|----------------|
| 1 | 0 | 1 | 1 |
| 5 | 0 | 5 | 25 |
| 10 | 0 | 10 | 100 |
| 50 | 0 | 50 | 2500 |

- Outliers typically have large residuals.
- Square loss much more affected by outliers than absolute loss.
Loss Function Robustness

- **Robustness** refers to how affected a learning algorithm is by outliers.
Some Losses for Regression

- **Square** or ℓ_2 Loss: $\ell(r) = r^2$ (*not robust*)
- **Absolute** or **Laplace** Loss: $\ell(r) = |r|$ (*not differentiable*)
 - gives **median regression**
- **Huber** Loss: Quadratic for $|r| \leq \delta$ and linear for $|r| > \delta$ (*robust and differentiable*)

\[\text{x-axis is the residual } y - \hat{y}. \]
Classification Loss Functions
The Classification Problem

- Outcome space $y = \{-1, 1\}$
- Action space $A = \{-1, 1\}$
- 0-1 loss for $f : \mathcal{X} \rightarrow \{-1, 1\}$:
 \[
 \ell(f(x), y) = 1(f(x) \neq y)
 \]
- But let’s allow real-valued predictions $f : \mathcal{X} \rightarrow \mathbb{R}$:
 \[
 f > 0 \implies \text{Predict 1} \\
 f < 0 \implies \text{Predict -1}
 \]
The Score Function

- Action space \(\mathcal{A} = \mathbb{R} \)
- Output space \(\mathbb{Y} = \{-1, 1\} \)
- **Real-valued prediction function** \(f : \mathcal{X} \to \mathbb{R} \)

Definition

The value \(f(x) \) is called the **score** for the input \(x \).

- In this context, \(f \) may be called a **score function**.
- Intuitively, magnitude of the score represents the **confidence of our prediction**.
The Margin

Definition

The margin (or functional margin) for predicted score \(\hat{y} \) and true class \(y \in \{-1, 1\} \) is \(y \hat{y} \).

- The margin often looks like \(yf(x) \), where \(f(x) \) is our score function.
- The margin is a measure of how correct we are.

- We want to maximize the margin.
- Most classification losses depend only on the margin.
- Such a loss is called a margin-based loss.

(In Lab, we will discuss a related concept called the geometric margin.)
The Classification Problem: Real-Valued Predictions

- Empirical risk for $0-1$ loss:

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(y_i f(x_i) \leq 0)$$

Minimizing empirical $0-1$ risk not computationally feasible

$\hat{R}_n(f)$ is non-convex, not differentiable (in fact, discontinuous!). Optimization is NP-Hard.
Classification Losses

Zero-One loss: $\ell_{0-1} = 1(m \leq 0)$

- x-axis is margin: $m > 0 \iff$ correct classification
Classification Loss Functions

SVM/Hinge loss: $\ell_{\text{Hinge}} = \max\{1 - m, 0\} = (1 - m)_+$

Hinge is a **convex**, upper bound on $0 - 1$ loss. Not differentiable at $m = 1$. We have a “margin error” when $m < 1$.
Classification Loss Functions

(Soft Margin) Linear Support Vector Machine

- Hypothesis space $\mathcal{F} = \{ f(x) = w^T x \mid w \in \mathbb{R}^d \}$.
- Loss $\ell(m) = (1 - m)_+$
- ℓ_2 regularization

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} (1 - y_i f_w(x_i))_+ + \lambda \|w\|_2^2$$
Classification Losses

Logistic/Log loss: \(\ell_{\text{Logistic}} = \log (1 + e^{-m}) \)

Logistic loss is differentiable. Logistic loss always wants more margin (loss never 0).
What About Square Loss for Classification?

- Action space $\mathcal{A} = \mathbb{R}$
- Output space $\mathcal{Y} = \{-1, 1\}$
- Loss $\ell(f(x), y) = (f(x) - y)^2$.
- Turns out, can write this in terms of margin $m = f(x)y$:
 \[
 \ell(f(x), y) = (f(x) - y)^2 = (1 - m)^2
 \]
- Prove using fact that $y^2 = 1$, since $y \in \{-1, 1\}$.
Classification Loss Functions

What About Square Loss for Classification?

Heavily penalizes outliers.

Seems to have higher sample complexity (i.e. needs more data) than hinge & logistic\(^1\).

\(^1\) Rosasco et al's "Are Loss Functions All the Same?" [link](http://web.mit.edu/lrosasco/www/publications/loss.pdf)