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-
Why Convex Optimization?

e Historically:

o Linear programs (linear objectives & constraints) were the focus
o Nonlinear programs: some easy, some hard

e By early 2000s:

e Main distinction is between convex and non-convex problems

o Convex problems are the ones we know how to solve efficiently

o Mostly batch methods until... around 20107 (earlier if you were into neural nets)
@ By 2010 +- few years, most people understood the

e optimization / estimation / approximation error tradeoffs
e accepted that stochatic methods were often faster to get good results

o (especially on big data sets)
e now nobody'’s scared to try convex optimization machinery on non-convex problems
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Your Reference for Convex Optimization

@ Boyd and Vandenberghe (2004)

o Very clearly written, but has a ton of detail for a first pass.
e See the Extreme Abridgement of Boyd and Vandenberghe.
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https://davidrosenberg.github.io/mlcourse/Notes/convex-optimization.pdf

L
Notation from Boyd and Vandenberghe

@ f:RP — RY to mean that f maps from some subset of RP
e namely dom f C RP, where dom f is the domain of f
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Convex Sets and Functions J
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Convex Sets

Definition

A set C is convex if for any x1,x2 € C and any 0 with 0 <0 <1 we have

Ox1+(1—0)xx € C.

KPM Fig. 7.4
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Convex and Concave Functions

Definition
A function f : R" — R is convex if dom f is a convex set and if for all x,y € dom f, and
0<0<1, we have

fFOx+(1—0)y) <Of(x)+(1—0)f(y).

KPM Fig. 7.5
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Examples of Convex Functions on R

Examples

@ x — ax+ b is both convex and concave on R for all a,b € R.
x > |x|P for p > 1 is convex on R
x — e® is convex on R for all ae R

Every norm on R" is convex (e.g. ||x|/1 and ||x]|2)

Max: (x1,...,Xn) = max{xy...,Xxn} is convex on R"
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Convex Functions and Optimization

Definition

A function f is strictly convex if the line segment connecting any two points on the graph of f
lies strictly above the graph (excluding the endpoints).

Consequences for optimization:
@ convex: if there is a local minimum, then it is a global minimum

@ strictly convex: if there is a local minimum, then it is the unique global minumum
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The General Optimization Problem J
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General Optimization Problem: Standard Form

General Optimization Problem: Standard Form

minimize fo(x)
subject to fi(x)<0, i=1,....m
hI(X) = OV = 1 pr

where x € R" are the optimization variables and fj is the objective function.

Assume domain D =" dom f;N(\?_, dom h; is nonempty.
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General Optimization Problem: More Terminology

The set of points satisfying the constraints is called the feasible set.

A point x in the feasible set is called a feasible point.

o If x is feasible and f;(x) =0,
o then we say the inequality constraint fj(x) <0 is active at x.

@ The optimal value p* of the problem is defined as

p* =inf{fy(x) | x satisfies all constraints}.

e x* is an optimal point (or a solution to the problem) if x* is feasible and f(x*) = p*.
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______ TheGeneral Optimization Problem |
Do We Need Equality Constraints?
o Note that
h(x)=0 <= (h(x) >0 AND h(x) <0)
o Consider an equality-constrained problem:
minimize fo(x)
subject to h(x)=0
@ Can be rewritten as

minimize fo(x)
subject to h(x) <0
—h(x) <0.

o For simplicity, we'll drop equality contraints from this presentation.
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Lagrangian Duality: Convexity not required
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____Legrangian Duality: Convexity not required |
The Lagrangian

The general [inequality-constrained] optimization problem is:

minimize fo(x)
subject to fi(x)<0, i=1,....m

Definition
The Lagrangian for this optimization problem is

m

Lix,A) =fHlx)+ Y Aifi(x).
i=1

@ A;'s are called Lagrange multipliers (also called the dual variables).
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____Legrangian Duality: Convexity not required |
The Lagrangian Encodes the Objective and Constraints

@ Supremum over Lagrangian gives back encoding of objective and constraints:

sup L(x,A) = sup (ﬁ)(x)—i-Z?\,-f,-(x))
i=1

AS0 AS0
~Jfolx) when fi(x) <Oall i
N I's) otherwise.

e Equivalent primal form of optimization problem:

p* =infsup L(x,A)
X A>=0
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_Lagrangian Duality: Convexity not required |
The Primal and the Dual

@ Original optimization problem in primal form:

p" =infsup L(x,A)
X A>0

@ Get the Lagrangian dual problem by “swapping the inf and the sup':

d* =supinfL(x,A)
A=0 X

o We will show weak duality: p* > d* for any optimization problem
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____Lagrangian Duality: Convexity not required |
Weak Max-Min Inequality

Theorem

For any f: W x Z — R, we have

sup inf f(w,z) < inf supf(w,z).

Proof.
For any wg € W and zy € Z, we clearly have

inf f(w,z) < f(wo,20) < supf(wg,2z).
wew zeZ

Since infy,ew f(w, z9) <sup,cz f(wp, z) for all wy and zy, we must also have
sup inf f(w,z) < inf supf(wg,z).

z0€Z WEW woEW ¢ 7
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____Lagrangian Duality: Convexity not required |
Weak Duality

e For any optimization problem (not just convex), weak max-min inequality implies weak

duality:
p* =infsup |[f(x)+ > Aifi(x
X A0 ol Z
> sup inf |[fo(x)+ ) Aifi(x)| =d*
A=0v X ol Z ]

@ The difference p* — d* is called the duality gap.

@ For convex problems, we often have strong duality: p* = d*.
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____Lagrangian Duality: Convexity not required |
The Lagrange Dual Function

@ The Lagrangian dual problem:

d* =supinfL(x,A)
A=0 X

Definition

The Lagrange dual function (or just dual function) is

g(\) =infL(x,A) =inf (fo(x)+Z?\,-f,-(x)> .

i=1

@ The dual function may take on the value —oco (e.g. fo(x) = x).
@ The dual function is always concave
e since pointwise min of affine functions
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____Legrangian Duality: Convexity not required |
The Lagrange Dual Problem: Search for Best Lower Bound

@ In terms of Lagrange dual function, we can write weak duality as

p* > supg(A) =d*
A>0

@ So for any A with A > 0, Lagrange dual function gives a lower bound on optimal
solution:
p* > g(A) forall A>0
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The Lagrange Dual Problem: Search for Best Lower Bound

@ The Lagrange dual problem is a search for best lower bound on p*:

maximize  g(A)
subject to A= 0.
o A dual feasible if A =0 and g(A) > —oo.

e A* dual optimal or optimal Lagrange multipliers if they are optimal for the Lagrange dual
problem.

o Lagrange dual problem often easier to solve (simpler constraints).

@ d* can be used as stopping criterion for primal optimization.
@ Dual can reveal hidden structure in the solution.

David Rosenberg (New York University) DS-GA 1003

July 26, 2017 23 /33



Convex Optimization J
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Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize fo(x)
subject to fi(x)<0, i=1,....m

where fy, ..., f, are convex functions.
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Strong Duality for Convex Problems

@ For a convex optimization problems, we usually have strong duality, but not always
e For example:
minimize e
subject to x?/y <0
y>0

@ The additional conditions needed are called constraint qualifications.

Example from Laurent El Ghaoui's EE 227A: Lecture 8 Notes, Feb 9, 2012
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______________CorvexOptimization |
Slater's Constraint Qualifications for Strong Duality

Sufficient conditions for strong duality in a convex problem.

Roughly: the problem must be strictly feasible.

Qualifications when problem domain! D C R” is an open set:

o Strict feasibility is sufficient. (3x f;(x) <0 fori=1,...,m)
o For any affine inequality constraints, f;(x) < 0 is sufficient.

Otherwise, see notes or BV Section 5.2.3, p. 226.

1D is the set where all functions are defined, NOT the feasible set.
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Complementary Slackness J
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Complementary Slackness

Consider a general optimization problem (i.e. not necessarily convex).

If we have strong duality, we get an interesting relationship between

o the optimal Lagrange multiplier A; and
o the jth constraint at the optimum: f;(x™)

Relationship is called “complementary slackness':

Nif(x") =0

Always have Lagrange multiplier is zero or constraint is active at optimum or both.
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Complementary Slackness “Sandwich Proof”

*

@ Assume strong duality: p* = d* in a general optimization problem

o Let x* be primal optimal and A* be dual optimal. Then:

fo(x*) = g(A")=inf L(x,A") (strong duality and definition)

< L(x*AY)
m
= fo(x*)+ ) Afi(x*
0(x™) ; (x*)
<0
< folxF).

Each term in sum }_;_; A'fi(x*) must actually be 0. That is

A fi(x)=0, i=1,....m|

This condition is known as complementary slackness.
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Consequences of our “Sandwich Proof”

o Let x* be primal optimal and A* be dual optimal.
@ If we have strong duality, then
pr=d" =fo(x") =g(A") = L(x",A")
and we have complementary slackness

Aifi(x*)=0, i=1,...,m.
@ From the proof, we can also conclude that

L(x*,A\*) =inf L(x,A™).

o If x— L(x,A*) is differentiable, then we must have VL(x*,A*) =0.
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_________________ Complementay Slackness |
Karush-Kuhn-Tucker (KKT) Necessary Conditions

Suppose we have strong duality: p* = d* = fo(x*) = g(A*) = L(x*,A*),

and fo, ...,y are differentiable, but not necessarily convex.

Then x*,A\* satisfy the following Karush-Kuhn-Tucker (KKT) conditions:
@ Primal and dual feasibility: f;(x*) <0, A¥ >0 for all /.
@ Complementary slackness: A*fi(x*) =0 for all /.
© First order conditions: VL(x*,A*) = Vfy(x*)+ Y L AN VF(x*)=0.

Only complementary slackness is not obvious.
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_ Complementary Slackness |
KKT Sufficient Conditions for Convex, Differentiable Problems

Suppose
e fy,..., Ty are differentiable and convex
e % and A satisfy the KKT conditions
Then we have strong duality and (X,A) are primal and dual optimal, respectively.

Proof.

Convexity and first order conditions implies X € argmin, L(x,A). So

g(A) =infL(x,A) = L(%,A) = f(X) —1—27\;1‘;()?) =fy(X) by complementary slackness.
i=1

But g(A) < supa-0&(A) <infy fo(x) < fo(X) (middle inequality by weak duality).
) X)

:SUPAtogU\) =inf, fo(x) = fo(X O

v
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