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Introduction

Why Convex Optimization?

Historically:
Linear programs (linear objectives & constraints) were the focus
Nonlinear programs: some easy, some hard

By early 2000s:
Main distinction is between convex and non-convex problems
Convex problems are the ones we know how to solve efficiently
Mostly batch methods until... around 2010? (earlier if you were into neural nets)

By 2010 +- few years, most people understood the
optimization / estimation / approximation error tradeoffs
accepted that stochatic methods were often faster to get good results

(especially on big data sets)

now nobody’s scared to try convex optimization machinery on non-convex problems
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Introduction

Your Reference for Convex Optimization

Boyd and Vandenberghe (2004)
Very clearly written, but has a ton of detail for a first pass.
See the Extreme Abridgement of Boyd and Vandenberghe.
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Introduction

Notation from Boyd and Vandenberghe

f : Rp→ Rq to mean that f maps from some subset of Rp

namely dom f ⊂ Rp, where dom f is the domain of f
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Convex Sets and Functions

Convex Sets

Definition
A set C is convex if for any x1,x2 ∈ C and any θ with 06 θ6 1 we have

θx1+(1−θ)x2 ∈ C .

KPM Fig. 7.4
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Convex Sets and Functions

Convex and Concave Functions

Definition
A function f : Rn→ R is convex if dom f is a convex set and if for all x ,y ∈ dom f , and
06 θ6 1, we have

f (θx +(1−θ)y)6 θf (x)+(1−θ)f (y).

x y

λ
1 − λ

A B

KPM Fig. 7.5
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Convex Sets and Functions

Examples of Convex Functions on R

Examples
x 7→ ax +b is both convex and concave on R for all a,b ∈ R.
x 7→ |x |p for p > 1 is convex on R
x 7→ eax is convex on R for all a ∈ R
Every norm on Rn is convex (e.g. ‖x‖1 and ‖x‖2)
Max: (x1, . . . ,xn) 7→max {x1 . . . ,xn} is convex on Rn
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Convex Sets and Functions

Convex Functions and Optimization

Definition
A function f is strictly convex if the line segment connecting any two points on the graph of f
lies strictly above the graph (excluding the endpoints).

Consequences for optimization:
convex: if there is a local minimum, then it is a global minimum
strictly convex: if there is a local minimum, then it is the unique global minumum
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The General Optimization Problem

General Optimization Problem: Standard Form

General Optimization Problem: Standard Form

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m
hi (x) = 0, i = 1, . . .p,

where x ∈ Rn are the optimization variables and f0 is the objective function.

Assume domain D=
⋂m

i=0 dom fi ∩
⋂p

i=1 dom hi is nonempty.
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The General Optimization Problem

General Optimization Problem: More Terminology

The set of points satisfying the constraints is called the feasible set.
A point x in the feasible set is called a feasible point.
If x is feasible and fi (x) = 0,

then we say the inequality constraint fi (x)6 0 is active at x .

The optimal value p∗ of the problem is defined as

p∗ = inf {f0(x) | x satisfies all constraints} .

x∗ is an optimal point (or a solution to the problem) if x∗ is feasible and f (x∗) = p∗.
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The General Optimization Problem

Do We Need Equality Constraints?

Note that
h(x) = 0 ⇐⇒ (h(x)> 0 AND h(x)6 0)

Consider an equality-constrained problem:

minimize f0(x)

subject to h(x) = 0

Can be rewritten as

minimize f0(x)

subject to h(x)6 0
−h(x)6 0.

For simplicity, we’ll drop equality contraints from this presentation.
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Lagrangian Duality: Convexity not required

The Lagrangian

The general [inequality-constrained] optimization problem is:

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m

Definition
The Lagrangian for this optimization problem is

L(x ,λ) = f0(x)+
m∑
i=1

λi fi (x).

λi ’s are called Lagrange multipliers (also called the dual variables).
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Lagrangian Duality: Convexity not required

The Lagrangian Encodes the Objective and Constraints

Supremum over Lagrangian gives back encoding of objective and constraints:

sup
λ�0

L(x ,λ) = sup
λ�0

(
f0(x)+

m∑
i=1

λi fi (x)

)

=

{
f0(x) when fi (x)6 0 all i∞ otherwise.

Equivalent primal form of optimization problem:

p∗ = inf
x
sup
λ�0

L(x ,λ)
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Lagrangian Duality: Convexity not required

The Primal and the Dual

Original optimization problem in primal form:

p∗ = inf
x
sup
λ�0

L(x ,λ)

Get the Lagrangian dual problem by “swapping the inf and the sup”:

d∗ = sup
λ�0

inf
x
L(x ,λ)

We will show weak duality: p∗ > d∗ for any optimization problem
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Lagrangian Duality: Convexity not required

Weak Max-Min Inequality

Theorem
For any f :W ×Z → R, we have

sup
z∈Z

inf
w∈W

f (w ,z)6 inf
w∈W

sup
z∈Z

f (w ,z).

Proof.
For any w0 ∈W and z0 ∈ Z , we clearly have

inf
w∈W

f (w ,z0)6 f (w0,z0)6 sup
z∈Z

f (w0,z).

Since infw∈W f (w ,z0)6 supz∈Z f (w0,z) for all w0 and z0, we must also have

sup
z0∈Z

inf
w∈W

f (w ,z0)6 inf
w0∈W

sup
z∈Z

f (w0,z).
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Lagrangian Duality: Convexity not required

Weak Duality

For any optimization problem (not just convex), weak max-min inequality implies weak
duality:

p∗ = inf
x
sup
λ�0

[
f0(x)+

m∑
i=1

λi fi (x)

]

> sup
λ�0,ν

inf
x

[
f0(x)+

m∑
i=1

λi fi (x)

]
= d∗

The difference p∗−d∗ is called the duality gap.
For convex problems, we often have strong duality: p∗ = d∗.
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Lagrangian Duality: Convexity not required

The Lagrange Dual Function

The Lagrangian dual problem:

d∗ = sup
λ�0

inf
x
L(x ,λ)

Definition
The Lagrange dual function (or just dual function) is

g(λ) = inf
x
L(x ,λ) = inf

x

(
f0(x)+

m∑
i=1

λi fi (x)

)
.

The dual function may take on the value −∞ (e.g. f0(x) = x).
The dual function is always concave

since pointwise min of affine functions
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Lagrangian Duality: Convexity not required

The Lagrange Dual Problem: Search for Best Lower Bound

In terms of Lagrange dual function, we can write weak duality as

p∗ > sup
λ>0

g(λ) = d∗

So for any λ with λ> 0, Lagrange dual function gives a lower bound on optimal
solution:

p∗ > g(λ) for all λ> 0
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Lagrangian Duality: Convexity not required

The Lagrange Dual Problem: Search for Best Lower Bound

The Lagrange dual problem is a search for best lower bound on p∗:

maximize g(λ)

subject to λ� 0.

λ dual feasible if λ� 0 and g(λ)>−∞.
λ∗ dual optimal or optimal Lagrange multipliers if they are optimal for the Lagrange dual
problem.

Lagrange dual problem often easier to solve (simpler constraints).
d∗ can be used as stopping criterion for primal optimization.
Dual can reveal hidden structure in the solution.
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Convex Optimization

Convex Optimization
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Convex Optimization

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m

where f0, . . . , fm are convex functions.
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Convex Optimization

Strong Duality for Convex Problems

For a convex optimization problems, we usually have strong duality, but not always.
For example:

minimize e−x

subject to x2/y 6 0
y > 0

The additional conditions needed are called constraint qualifications.

Example from Laurent El Ghaoui’s EE 227A: Lecture 8 Notes, Feb 9, 2012
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Convex Optimization

Slater’s Constraint Qualifications for Strong Duality

Sufficient conditions for strong duality in a convex problem.
Roughly: the problem must be strictly feasible.
Qualifications when problem domain1 D⊂ Rn is an open set:

Strict feasibility is sufficient. (∃x fi (x)< 0 for i = 1, . . . ,m)
For any affine inequality constraints, fi (x)6 0 is sufficient.

Otherwise, see notes or BV Section 5.2.3, p. 226.

1D is the set where all functions are defined, NOT the feasible set.
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Complementary Slackness

Complementary Slackness

Consider a general optimization problem (i.e. not necessarily convex).
If we have strong duality, we get an interesting relationship between

the optimal Lagrange multiplier λi and
the ith constraint at the optimum: fi (x∗)

Relationship is called “complementary slackness”:

λ∗i fi (x
∗) = 0

Always have Lagrange multiplier is zero or constraint is active at optimum or both.
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Complementary Slackness

Complementary Slackness “Sandwich Proof”

Assume strong duality: p∗ = d∗ in a general optimization problem
Let x∗ be primal optimal and λ∗ be dual optimal. Then:

f0(x
∗) = g(λ∗) = inf

x
L(x ,λ∗) (strong duality and definition)

6 L(x∗,λ∗)

= f0(x
∗)+

m∑
i=1

λ∗i fi (x
∗)︸ ︷︷ ︸

60

6 f0(x
∗).

Each term in sum
∑

i=1λ
∗
i fi (x

∗) must actually be 0. That is

λ∗i fi (x
∗) = 0, i = 1, . . . ,m .

This condition is known as complementary slackness.
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Complementary Slackness

Consequences of our “Sandwich Proof”

Let x∗ be primal optimal and λ∗ be dual optimal.
If we have strong duality, then

p∗ = d∗ = f0(x
∗) = g(λ∗) = L(x∗,λ∗)

and we have complementary slackness

λ∗i fi (x
∗) = 0, i = 1, . . . ,m.

From the proof, we can also conclude that

L(x∗,λ∗) = inf
x
L(x ,λ∗).

If x 7→ L(x ,λ∗) is differentiable, then we must have ∇L(x∗,λ∗) = 0.
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Complementary Slackness

Karush-Kuhn-Tucker (KKT) Necessary Conditions

Suppose we have strong duality: p∗ = d∗ = f0(x
∗) = g(λ∗) = L(x∗,λ∗),

and f0, . . . , fm are differentiable, but not necessarily convex.
Then x∗,λ∗ satisfy the following Karush-Kuhn-Tucker (KKT) conditions:

1 Primal and dual feasibility: fi (x∗)6 0, λ∗i > 0 for all i .
2 Complementary slackness: λ∗i fi (x

∗) = 0 for all i .
3 First order conditions: ∇xL(x

∗,λ∗) =∇f0(x∗)+
∑m

i=1λ
∗
i ∇fi (x∗) = 0.

Only complementary slackness is not obvious.
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Complementary Slackness

KKT Sufficient Conditions for Convex, Differentiable Problems

Suppose
f0, . . . , fm are differentiable and convex
x̃ and λ̃ satisfy the KKT conditions

Then we have strong duality and (x̃ , λ̃) are primal and dual optimal, respectively.

Proof.

Convexity and first order conditions implies x̃ ∈ argminx L(x , λ̃). So

g(λ̃) = inf
x
L(x , λ̃) = L(x̃ , λ̃) = f0(x̃)+

m∑
i=1

λ̃i fi (x̃) = f0(x̃) by complementary slackness.

But g(λ̃)6 supλ�0 g(λ)6 infx f0(x)6 f0(x̃) (middle inequality by weak duality).
So g(λ̃) = supλ�0 g(λ) = infx f0(x) = f0(x̃)
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