Introduction to Kernel Methods

David Rosenberg

New York University

February 21, 2017

Setup and Motivation

The Input Space ${\mathfrak X}$

- $\bullet\,$ Our general learning theory setup: no assumptions about ${\mathcal X}$
- But $\mathfrak{X} = \mathbf{R}^d$ for the specific methods we've developed:
 - Ridge regression
 - Lasso regression
 - Support Vector Machines
 - Perceptrons
- Our hypothesis space for these was all affine functions on \mathbf{R}^d :

$$\mathcal{H} = \left\{ x \mapsto w^{T} x + b \mid w \in \mathbf{R}^{d}, b \in \mathbf{R} \right\}.$$

• What if we want to do prediction on inputs not natively in \mathbf{R}^{d} ?

Feature Extraction

Definition

Mapping an input from \mathcal{X} to a vector in \mathbf{R}^d is called **feature extraction** or **featurization**.

• e.g. Quadratic feature map: $\mathcal{X} = \mathbf{R}^d$

$$\phi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_ix_j, \dots, \sqrt{2}x_{d-1}x_d)^T.$$

Linear Models with Explicit Feature Map

- Rather than take $\mathcal{X} = \mathbf{R}^d$, let \mathcal{X} be its own thing:
- \bullet Input space: ${\mathfrak X}$
- Introduce feature map $\psi: \mathfrak{X} \to \mathbf{R}^d$
- The feature map maps into the feature space R^d.
- Hypothesis space of affine functions on feature space:

$$\mathcal{H} = \left\{ x \mapsto w^T \psi(x) + b \mid w \in \mathbf{R}^d, b \in \mathbf{R} \right\}.$$

Linear Models Need Big Feature Spaces

- To get expressive hypothesis spaces using linear models,
 - need high-dimensional feature spaces
 - (What do we mean by expressive?)
- Very large feature spaces have two problems:
 - Overfitting
 - Memory and computational costs
- Overfitting we handle with regularization.
- Kernel methods can (sometimes) help with memory and computational costs.

Some Methods Can Be "Kernelized"

Definition

A method is **kernelized** if inputs only appear inside inner products: $\langle \psi(x), \psi(y) \rangle$ for $x, y \in \mathcal{X}$.

 \bullet The kernel function corresponding to ψ and inner product $\langle\cdot,\cdot\rangle$ is

 $k(x,y) = \langle \psi(x), \psi(y) \rangle.$

- Why introduce this new notation k(x, y)?
- Turns out, we can often evaluate k(x, y) directly,
 - without explicitly computing $\psi(x)$ and $\psi(y)$.
- For large feature spaces, can be much faster.

Kernel Evaluation Can Be Fast

Example

Quadratic feature map

$$\Phi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_ix_j, \dots, \sqrt{2}x_{d-1}x_d)^T$$

has dimension $O(d^2)$, but

$$k(w, x) = \langle \phi(w), \phi(x) \rangle = \langle w, x \rangle + \langle w, x \rangle^2$$

- Naively explicit computation of k(w, x): $O(d^2)$
- Implicit computation of k(w, x): O(d)

Kernels as Similarity Scores

- Can think of the kernel function as a similarity score.
- But this is not precise.
- There are many ways to design a similarity score.
 - A kernel function is special because it's an inner product.
 - Has many mathematical benefits.

What's the Benefit of Kernelization?

- **(**) Computational (e.g. when feature space dimension d larger than sample size n).
- 2 Access to infinite-dimensional feature spaces.
- 3 Allows thinking in terms of "similarity" rather than features.

Example: SVM

SVM Dual

• Recall the SVM dual optimization problem

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$

s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \quad i = 1, \dots, n.$$

- Notice: x's only show up as inner products with other x's.
- Can replace $x_i^T x_i$ by an arbitrary kernel $k(x_j, x_i)$.
- What kernel are we currently using?

The Kernel Matrix (or the Gram Matrix)

Definition

For a set of $\{x_1, \ldots, x_n\}$ and an inner product $\langle \cdot, \cdot \rangle$ on the set, the **kernel matrix** or the **Gram matrix** is defined as

$$\mathcal{K} = \left(\langle x_i, x_j \rangle \right)_{i,j} = \begin{pmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\ \vdots & \ddots & \cdots \\ \langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle \end{pmatrix}.$$

Then for the standard Euclidean inner product $\langle x_i, x_j \rangle = x_i^T x_j$, we have

$$K = XX^T$$

SVM Dual with Kernel Matrix

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K_{ji}$$

s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \quad i = 1, \dots, n.$$

- Once our algorithm works with kernel matrices, we can change kernel just by changing the matrix.
- Size of matrix: $n \times n$, where *n* is the number of data points.
- Recall with ridge regression, we worked with $X^T X$, which is $d \times d$, where d is feature space dimension.

David Rosenberg (New York University)

Some Kernels

Linear Kernel

- Input space: $\mathfrak{X} = \mathbf{R}^d$
- Feature space: $\mathcal{H}=\mathbf{R}^d,$ with standard inner product
- Feature map

 $\psi(x) = x.$

• Kernel:

$$k(w, x) = w^T x$$

Quadratic Kernel in \mathbf{R}^2

- Input space: $\mathfrak{X} = \mathbf{R}^2$
- Feature space: $\mathcal{H}=\mathbf{R}^5$
- Feature map:

$$\psi: (x_1, x_2) \mapsto (x_1, x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

- Gives us ability to represent conic section boundaries.
- Define kernel as inner product in feature space:

$$\begin{aligned} \kappa(w,x) &= \langle \psi(w), \psi(x) \rangle \\ &= w_1 x_1 + w_2 x_2 + w_1^2 x_1^2 + w_2^2 x_2^2 + 2w_1 w_2 x_1 x_2 \\ &= w_1 x_1 + w_2 x_2 + (w_1 x_1)^2 + (w_2 x_2)^2 + 2(w_1 x_1)(w_2 x_2)^2 \\ &= \langle w, x \rangle + \langle w, x \rangle^2 \end{aligned}$$

Based on Guillaume Obozinski's Statistical Machine Learning course at Louvain, Feb 2014.

Quadratic Kernel in \mathbf{R}^d

- Input space $\mathfrak{X} = \mathbf{R}^d$
- Feature space: $\mathcal{H} = \mathbf{R}^D$, where $D = d + \binom{d}{2} \approx d^2/2$.
- Feature map:

$$\phi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_ix_j, \dots, \sqrt{2}x_{d-1}x_d)^T$$

• Still have

$$k(w, x) = \langle \phi(w), \phi(x) \rangle$$
$$= \langle x, y \rangle + \langle x, y \rangle^{2}$$

- Computation for inner product with explicit mapping: $O(d^2)$
- Computation for implicit kernel calculation: O(d).

Based on Guillaume Obozinski's Statistical Machine Learning course at Louvain, Feb 2014.

Polynomial Kernel in \mathbf{R}^d

- Input space $\mathcal{X} = \mathbf{R}^d$
- Kernel function:

$$k(w, x) = (1 + \langle w, x \rangle)^M$$

- Corresponds to a feature map with all terms up to degree M.
- For any M, computing the kernel has same computational cost
- Cost of explicit inner product computation grows rapidly in *M*.

Radial Basis Function (RBF) / Gaussian Kernel

• Input space $\mathcal{X} = \mathbf{R}^d$

$$k(w,x) = \exp\left(-\frac{\|w-x\|^2}{2\sigma^2}\right),$$

where σ^2 is known as the bandwidth parameter.

- Does it act like a similarity score?
- Why "radial"?
- Have we departed from our "inner product of feature vector" recipe?
 - Yes and no: corresponds to an infinite dimensional feature vector
- Probably the most common nonlinear kernel.

Kernel Trick: Overview

Recap

- **1** Given a kernelized ML algorithm.
- ② Can swap out the inner product for a new kernel function.
- Solution New kernel may correspond to a high dimensional feature space.
- Once kernel matrix is computed, computational cost depends on number of data points, rather than the dimension of feature space.

Swapping out a linear kernel for a new kernel is called the kernel trick.