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Setup and Motivation

The Input Space X

Our general learning theory setup: no assumptions about X
But X= Rd for the specific methods we’ve developed:

Ridge regression
Lasso regression
Support Vector Machines
Perceptrons

Our hypothesis space for these was all affine functions on Rd :

H =
{
x 7→ wT x +b | w ∈ Rd ,b ∈ R

}
.

What if we want to do prediction on inputs not natively in Rd?
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Setup and Motivation

Feature Extraction

Definition

Mapping an input from X to a vector in Rd is called feature extraction or featurization.

e.g. Quadratic feature map: X= Rd

φ(x) = (x1, . . . ,xd ,x
2
1 , . . . ,x

2
d ,
√
2x1x2, . . . ,

√
2xixj , . . .

√
2xd−1xd)

T .
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Setup and Motivation

Linear Models with Explicit Feature Map

Rather than take X= Rd , let X be its own thing:

Input space: X
Introduce feature map ψ : X→ Rd

The feature map maps into the feature space Rd .
Hypothesis space of affine functions on feature space:

H =
{
x 7→ wTψ(x)+b | w ∈ Rd ,b ∈ R

}
.
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Setup and Motivation

Linear Models Need Big Feature Spaces

To get expressive hypothesis spaces using linear models,
need high-dimensional feature spaces
(What do we mean by expressive?)

Very large feature spaces have two problems:
1 Overfitting
2 Memory and computational costs

Overfitting we handle with regularization.

Kernel methods can (sometimes) help with memory and computational costs.
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Setup and Motivation

Some Methods Can Be “Kernelized”

Definition
A method is kernelized if inputs only appear inside inner products: 〈ψ(x),ψ(y)〉 for x ,y ∈ X.

The kernel function corresponding to ψ and inner product 〈·, ·〉 is

k(x ,y) = 〈ψ(x),ψ(y)〉 .

Why introduce this new notation k(x ,y)?

Turns out, we can often evaluate k(x ,y) directly,
without explicilty computing ψ(x) and ψ(y).

For large feature spaces, can be much faster.
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Setup and Motivation

Kernel Evaluation Can Be Fast

Example
Quadratic feature map

φ(x) = (x1, . . . ,xd ,x
2
1 , . . . ,x

2
d ,
√
2x1x2, . . . ,

√
2xixj , . . .

√
2xd−1xd)

T

has dimension O(d2), but

k(w ,x) = 〈φ(w),φ(x)〉= 〈w ,x〉+ 〈w ,x〉2

Naively explicit computation of k(w ,x): O(d2)

Implicit computation of k(w ,x): O(d)
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Setup and Motivation

Kernels as Similarity Scores

Can think of the kernel function as a similarity score.
But this is not precise.
There are many ways to design a similarity score.

A kernel function is special because it’s an inner product.
Has many mathematical benefits.
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Setup and Motivation

What’s the Benefit of Kernelization?

1 Computational (e.g. when feature space dimension d larger than sample size n).
2 Access to infinite-dimensional feature spaces.
3 Allows thinking in terms of “similarity” rather than features.

David Rosenberg (New York University) DS-GA 1003 February 21, 2017 10 / 22



Example: SVM

Example: SVM

David Rosenberg (New York University) DS-GA 1003 February 21, 2017 11 / 22



Example: SVM

SVM Dual

Recall the SVM dual optimization problem

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Notice: x ’s only show up as inner products with other x ’s.

Can replace xTj xi by an arbitrary kernel k(xj ,xi ).

What kernel are we currently using?
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Example: SVM

The Kernel Matrix (or the Gram Matrix)

Definition
For a set of {x1, . . . ,xn} and an inner product 〈·, ·〉 on the set, the kernel matrix or the Gram
matrix is defined as

K =
(
〈xi ,xj〉

)
i ,j

=

〈x1,x1〉 · · · 〈x1,xn〉
...

. . . · · ·
〈xn,x1〉 · · · 〈xn,xn〉

 .

Then for the standard Euclidean inner product 〈xi ,xj〉= xTi xj , we have

K = XXT
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Example: SVM

SVM Dual with Kernel Matrix

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjKji

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Once our algorithm works with kernel matrices, we can change kernel just by changing the
matrix.
Size of matrix: n×n, where n is the number of data points.
Recall with ridge regression, we worked with XTX , which is d ×d , where d is feature
space dimension.
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Some Kernels

Linear Kernel

Input space: X= Rd

Feature space: H = Rd , with standard inner product
Feature map

ψ(x) = x .

Kernel:
k(w ,x) = wT x
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Some Kernels

Quadratic Kernel in R2

Input space: X= R2

Feature space: H = R5

Feature map:
ψ : (x1,x2) 7→

(
x1,x2,x

2
1 ,x

2
2 ,
√
2x1x2

)
Gives us ability to represent conic section boundaries.
Define kernel as inner product in feature space:

k(w ,x) = 〈ψ(w),ψ(x)〉
= w1x1+w2x2+w2

1 x
2
1 +w2

2 x
2
2 +2w1w2x1x2

= w1x1+w2x2+(w1x1)
2+(w2x2)

2+2(w1x1)(w2x2)

= 〈w ,x〉+ 〈w ,x〉2

Based on Guillaume Obozinski’s Statistical Machine Learning course at Louvain, Feb 2014.
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Some Kernels

Quadratic Kernel in Rd

Input space X= Rd

Feature space: H = RD , where D = d +
(
d
2

)
≈ d2/2.

Feature map:

φ(x) = (x1, . . . ,xd ,x
2
1 , . . . ,x

2
d ,
√
2x1x2, . . . ,

√
2xixj , . . .

√
2xd−1xd)

T

Still have

k(w ,x) = 〈φ(w),φ(x)〉
= 〈x ,y〉+ 〈x ,y〉2

Computation for inner product with explicit mapping: O(d2)

Computation for implicit kernel calculation: O(d).

Based on Guillaume Obozinski’s Statistical Machine Learning course at Louvain, Feb 2014.
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Some Kernels

Polynomial Kernel in Rd

Input space X= Rd

Kernel function:
k(w ,x) = (1+ 〈w ,x〉)M

Corresponds to a feature map with all terms up to degree M.
For any M, computing the kernel has same computational cost
Cost of explicit inner product computation grows rapidly in M.
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Some Kernels

Radial Basis Function (RBF) / Gaussian Kernel

Input space X= Rd

k(w ,x) = exp
(
−
‖w − x‖2

2σ2

)
,

where σ2 is known as the bandwidth parameter.
Does it act like a similarity score?
Why “radial”?
Have we departed from our “inner product of feature vector” recipe?

Yes and no: corresponds to an infinite dimensional feature vector

Probably the most common nonlinear kernel.
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Kernel Trick: Overview

Recap

1 Given a kernelized ML algorithm.
2 Can swap out the inner product for a new kernel function.
3 New kernel may correspond to a high dimensional feature space.
4 Once kernel matrix is computed, computational cost depends on number of data points,

rather than the dimension of feature space.

Swapping out a linear kernel for a new kernel is called the kernel trick.
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