Kernel Methods: Wrapup and Review

David Rosenberg

New York University

February 28, 2017
Kernelization
Linear Models

- So far we’ve discussed
 - Linear regression
 - Ridge regression
 - Lasso regression
 - Support Vector Machines
 - Perceptrons
- Each of these methods assumes
 - Input space \mathcal{X}.
 - Feature map $\psi : \mathcal{X} \rightarrow \mathbb{R}^d$.
 - Linear (or affine) hypothesis space:

$$\mathcal{H} = \left\{ x \mapsto w^T \psi(x) \mid w \in \mathbb{R}^d \right\}.$$
What is a Kernelized Method?

Definition

A method is **kernelized** if every reference to an element of the input space $x_1 \in X$ occurs in an inner product with another element of the input space, such as $\langle \psi(x_1), \psi(x_2) \rangle$ for some $x_2 \in X$.

- The **kernel function** corresponding to ψ is

$$k(x_1, x_2) = \langle \psi(x_1), \psi(x_2) \rangle.$$
Is it Kernelized?

- What if $\mathcal{X} = \mathbb{R}^d$ and we see x’s always show up as $x_i^T x_j$. Is that kernelized?
 - Yes! Consider the identity feature map $\psi(x) = x$ with the standard inner product.

- What if x’s only show up in XX^T?
 - Yes! Every matrix entry is an inner product: $(XX^T)_{ij} = x_i^T x_j$.

- What if x’s only show up in $X^T X$?
 - No! Every matrix entry is inner product between single features:

 $$(X^T X)_{ij} = f_i^T f_j,$$

 where f_i is the ith coordinate for all x’s.
A Generalized Linear Objective Function
Generalize from SVM Objective

- Featurized SVM objective:
 \[
 \min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2 + c \sum_{i=1}^{n} (1 - y_i [\langle w, \psi(x_i) \rangle])_+.
 \]

- Generalized objective:
 \[
 \min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, \psi(x_1) \rangle, \ldots, \langle w, \psi(x_n) \rangle),
 \]
 where
 - \(R : \mathbb{R}^{\geq 0} \to \mathbb{R} \) is nondecreasing (Regularization term)
 - and \(L : \mathbb{R}^n \to \mathbb{R} \) is arbitrary. (Loss term)
Generalized Linear Objective Function (Details)

- **Generalized objective:**

\[
\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, \psi(x_1) \rangle, \ldots, \langle w, \psi(x_n) \rangle),
\]

where

- \(w, \psi(x_1), \ldots, \psi(x_n) \in \mathcal{H}\) for some Hilbert space \(\mathcal{H}\). (We typically have \(\mathcal{H} = \mathbb{R}^d\).)
- \(\| \cdot \|\) is the norm corresponding to the inner product of \(\mathcal{H}\). (i.e. \(\|w\| = \sqrt{\langle w, w \rangle}\))
- \(R : \mathbb{R}^+ \to \mathbb{R}\) is nondecreasing (Regularization term), and
- \(L : \mathbb{R}^n \to \mathbb{R}\) is arbitrary (Loss term).
Generalized Linear Objective Function

- **Generalized objective:**
 \[
 \min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, \psi(x_1) \rangle, \ldots, \langle w, \psi(x_n) \rangle),
 \]

- Why “linear”? \(\langle w, \psi(x_i) \rangle \) is a generalization of predictions \(w^T \psi(x_i) \)
 - a linear function of \(\psi(x_i) \in \mathbb{R}^d \).

- Ridge regression and SVM are of this form.

- What if we penalize with \(\lambda \|w\|_2 \) instead of \(\lambda \|w\|_2^2 \)? Yes!

- What if we use lasso regression? No! \(\ell_1 \) norm does not correspond to an inner product.
The Representer Theorem

Theorem (Representer Theorem)

Let

\[J(w) = R(\|w\|) + L(\langle w, \psi(x_1) \rangle, \ldots, \langle w, \psi(x_n) \rangle), \]

where

- \(w, \psi(x_1), \ldots, \psi(x_n) \in \mathcal{H} \) for some Hilbert space \(\mathcal{H} \). (We typically have \(\mathcal{H} = \mathbb{R}^d \).)
- \(\| \cdot \| \) is the norm corresponding to the inner product of \(\mathcal{H} \). (i.e. \(\|w\| = \sqrt{\langle w, w \rangle} \))
- \(R: \mathbb{R}^\geq \to \mathbb{R} \) is nondecreasing (Regularization term), and
- \(L: \mathbb{R}^n \to \mathbb{R} \) is arbitrary (Loss term).

If \(J(w) \) has a minimizer, then it has a minimizer of the form \(w^* = \sum_{i=1}^{n} \alpha_i \psi(x_i) \).

[If \(R \) is strictly increasing, then all minimizers have this form. (Proof in homework.)]
The Representer Theorem (Proof)

Let \(w^* \) be a minimizer.

Let \(M = \text{span} (\psi(x_1), \ldots, \psi(x_n)) \). [the “span of the data”]

Let \(w = \text{Proj}_M w^* \). So \(\exists \alpha \text{ s.t. } w = \sum_{i=1}^n \alpha_i \psi(x_i) \).

Then \(w^\perp := w^* - w \) is orthogonal to \(M \).

Projections decrease norms: \(\|w\| \leq \|w^*\| \).

Since \(R \) is nondecreasing, \(R(\|w\|) \leq R(\|w^*\|) \).

By (4), \(\langle w^*, \psi(x_i) \rangle = \langle w + w^\perp, \psi(x_i) \rangle = \langle w, \psi(x_i) \rangle \).

\[L (\langle w^*, \psi(x_1) \rangle, \ldots, \langle w^*, \psi(x_n) \rangle) = L (\langle w, \psi(x_1) \rangle, \ldots, \langle w, \psi(x_n) \rangle) \]

\[J(w) \leq J(w^*). \]

Therefore \(w = \sum_{i=1}^n \alpha_i \psi(x_i) \) is also a minimizer.

Q.E.D.
Using Representer Theorem to Kernelize
Kernelized Predictions

- Consider $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$. (As representer theorem implies.)
- How do we make predictions for a given $x \in X$?

$$f(x) = \langle w, \psi(x) \rangle = \left\langle \sum_{i=1}^{n} \alpha_i \psi(x_i), \psi(x) \right\rangle$$

$$= \sum_{i=1}^{n} \alpha_i \langle \psi(x_i), \psi(x) \rangle$$

$$= \sum_{i=1}^{n} \alpha_i k(x_i, x)$$

Note: $f(x)$ is a linear combination of $k(x_1, x), \ldots, k(x_n, x)$, all considered as functions of x.
Kernelized Regularization

- Consider $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$.
- What does $R(\|w\|)$ look like?

$$
\|w\|^2 = \langle w, w \rangle \\
= \left\langle \sum_{i=1}^{n} \alpha_i \psi(x_i), \sum_{j=1}^{n} \alpha_j \psi(x_j) \right\rangle \\
= \sum_{i,j=1}^{n} \alpha_i \alpha_j \langle \psi(x_i), \psi(x_j) \rangle \\
= \sum_{i,j=1}^{n} \alpha_i \alpha_j k(x_i, x_j)
$$

(You should recognize the last expression as a quadratic form.)
The Kernel Matrix (a.k.a. Gram Matrix)

Definition

The kernel matrix or Gram matrix for a kernel k on a set $\{x_1, \ldots, x_n\}$ is

$$K = (k(x_i, x_j))_{i,j} = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix} \in \mathbb{R}^{n \times n}.$$
Consider $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$.

What does $R(\|w\|)$ look like?

$$\|w\|^2 = \sum_{i,j=1}^{n} \alpha_i \alpha_j k(x_i, x_j)$$

$$= \alpha^T K \alpha$$

So $R(\|w\|) = R(\sqrt{\alpha^T K \alpha})$.
Kernelized Predictions

- Write $f_\alpha(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i)$. (Switched from $k(x_i, x)$ by symmetry of inner product.)
- Predictions on the training points have a particularly simple form:

$$
\begin{pmatrix}
 f_\alpha(x_1) \\
 \vdots \\
 f_\alpha(x_n)
\end{pmatrix} =
\begin{pmatrix}
 \alpha_1 k(x_1, x_1) + \cdots + \alpha_n k(x_1, x_n) \\
 \vdots \\
 \alpha_1 k(x_n, x_1) + \cdots + \alpha_n k(x_n, x_n)
\end{pmatrix}
\begin{pmatrix}
 \alpha_1 \\
 \vdots \\
 \alpha_n
\end{pmatrix}
= \begin{pmatrix}
 k(x_1, x_1) & \cdots & k(x_1, x_n) \\
 \vdots & \ddots & \vdots \\
 k(x_n, x_1) & \cdots & k(x_n, x_n)
\end{pmatrix}
\begin{pmatrix}
 \alpha_1 \\
 \vdots \\
 \alpha_n
\end{pmatrix}
= K \alpha
$$
Kernelized Objective

- Substituting

\[w = \sum_{i=1}^{n} \alpha_i \psi(x_i) \]

into generalized objective, we get

\[\min_{\alpha \in \mathbb{R}^n} R \left(\sqrt{\alpha^T K \alpha} \right) + L(K \alpha). \]

- No direct access to \(\psi(x_i) \).
- All references are via kernel matrix \(K \).
- (Assumes \(R \) and \(L \) do not hide any references to \(\psi(x_i) \).)
- This is the kernelized objective function.
Kernelized SVM

- The SVM objective:

$$\min_{w \in \mathcal{H}} \frac{1}{2} \|w\|^2 + \frac{c}{n} \sum_{i=1}^{n} \left(1 - y_i \left[\langle w, \varphi(x_i) \rangle \right]_+ \right).$$

- Kernelizing yields

$$\min_{\alpha \in \mathbb{R}^n} \frac{1}{2} \alpha^T K \alpha + \frac{c}{n} \sum_{i=1}^{n} \left(1 - y_i (K \alpha)_i \right)_+.$$
Kernelized Ridge Regression

- Ridge Regression:
 \[
 \min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \|w\|^2
 \]

- Featurized Ridge Regression
 \[
 \min_{w \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (\langle w, \psi(x_i) \rangle - y_i)^2 + \lambda \|w\|^2
 \]

- Kernelized Ridge Regression
 \[
 \min_{\alpha \in \mathbb{R}^n} \frac{1}{n} \|K\alpha - y\|^2 + \lambda \alpha^T K\alpha,
 \]
 where \(y = (y_1, \ldots, y_n)^T. \)
Prediction Functions with RBF Kernel
Radial Basis Function (RBF) / Gaussian Kernel

- Input space \(\mathcal{X} = \mathbb{R}^d \)

\[
k(w, x) = \exp \left(-\frac{\|w - x\|^2}{2\sigma^2} \right),
\]

where \(\sigma^2 \) is known as the bandwidth parameter.

- Does it act like a similarity score?
- Why “radial”?
- Have we departed from our “inner product of feature vector” recipe?
 - Yes and no: corresponds to an infinite dimensional feature vector
- Probably the most common nonlinear kernel.
RBF Basis

- Input space $\mathcal{X} = \mathbb{R}$
- Output space: $\mathcal{Y} = \mathbb{R}$
- RBF kernel $k(w, x) = \exp\left(- (w - x)^2\right)$.
- Suppose we have 6 training examples: $x_i \in \{-6, -4, -3, 0, 2, 4\}$.
- If representer theorem applies, then

$$f(x) = \sum_{i=1}^{6} \alpha_i k(x_i, x).$$

- f is a linear combination of 6 basis functions of form $k(x_i, \cdot)$:
RBF Predictions

- Basis functions

![Basis functions graph](image)

- Predictions of the form $f(x) = \sum_{i=1}^{6} \alpha_i k(x_i, x)$:

![Prediction function graph](image)

- When kernelizing with RBF kernel, prediction functions always look this way.
 - (Whether we get w from SVM, ridge regression, etc...)
RBF Feature Space: The Sequence Space ℓ_2

- To work with infinite dimensional feature vectors, we need a space with certain properties.
 - an inner product
 - a norm related to the inner product
 - projection theorem: $x = x_\perp + x_\parallel$ where $x_\parallel \in S = \text{span}(w_1,\ldots,w_n)$ and $\langle x_\perp, s \rangle = 0 \quad \forall s \in S$.
- Basically, we need a Hilbert space.

Definition

ℓ_2 is the space of all real-valued sequences: $(x_0, x_1, x_2, x_3, \ldots)$ with $\sum_{i=0}^{\infty} x_i^2 < \infty$.

Theorem

With the inner product $\langle x, x' \rangle = \sum_{i=0}^{\infty} x_i x'_i$, ℓ_2 is a Hilbert space.
The Infinite Dimensional Feature Vector for RBF

- Consider RBF kernel (1-dim): \(k(w, x) = \exp\left(- (w - x)^2 / 2\right) \)
- We claim that \(\psi : \mathbb{R} \rightarrow \ell_2 \) be defined by

\[
[\psi(x)]_n = \frac{1}{\sqrt{n!}} e^{-x^2/2} x^n
\]

gives the "infinite-dimensional feature vector" corresponding to RBF kernel.
- Is this mapping even well-defined? Is \(\psi(x) \) even an element of \(\ell_2 \)?
- Yes:

\[
\sum_{n=0}^{\infty} \frac{1}{n!} e^{-x^2} x^{2n} = e^{-x^2} \sum_{n=0}^{\infty} \frac{(x^2)^n}{n!} = 1 < \infty
\]
The Infinite Dimensional Feature Vector for RBF

- Does feature vector $[\psi(x)]_n = \frac{1}{\sqrt{n!}} e^{-x^2/2} x^n$ actually correspond to the RBF kernel?
- Yes! Proof:

$$\langle \psi(w), \psi(x) \rangle = \sum_{n=0}^{\infty} \frac{1}{n!} e^{-\frac{(x^2+w^2)}{2}} x^n w^n$$

$$= e^{-\frac{(x^2+w^2)}{2}} \sum_{n=0}^{\infty} \frac{(xw)^n}{n!}$$

$$= \exp\left(-\frac{x^2 + w^2}{2}\right) \exp(xw)$$

$$= \exp\left(-\frac{(x - w)^2}{2}\right)$$

QED