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Multiclass Setting

@ Input space: X
@ Ouput space: Y={1,...,k}

@ Today we consider linear methods specifically designed for multiclass.
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One-vs-All / One-vs-Rest

Plot courtesy of David Sontag.
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One-vs-All / One-vs-Rest

Train k binary classifiers, one for each class.

Train ith classifier to distinguish class 7 from rest

Suppose hi, ..., hg : X — R are our binary classifiers.
o Can output hard classifications in {—1,1} or scores in R.

Final prediction is
h(x) = argmax h;(x)
i€fl,... .k}

@ Ties can be broken arbitrarily.
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Linear Classifers: Binary and Multiclass

Linear Binary Classifier Review

Input Space: X = R¢
Output Space: Y={-1,1}

@ Linear classifier score function:

flx) = (w,x)=w'x
e Final classification prediction: sign (f(x))
o Geometrically, when are sign(f(x)) =41 and sign(f(x)) =—17?
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Linear Classifers: Binary and Multiclass

Linear Binary Classifier Review

flx) = (w,x)=|wl|x] cos®
f(x)>0 <= cos0>0 <= 0¢c(—90°90°)
f(x)<0 <= cosf<0 < 0¢[—-90°90°]
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Three Class Example
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@ Base hypothesis space H = {f(x) =wlx|xe Rz}.
@ Note: Separating boundary always contains the origin.

Example based on Shalev-Schwartz and Ben-David's Understanding Machine Learning, Section 17.1

David Rosenberg (New York University) DS-GA 1003 March 7, 2017 10 / 52



Linear Classifers: Binary and Multiclass

Three Class Example: One-vs-Rest

/N

@ Class 1 vs Rest:
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Linear Classifers: Binary and Multiclass

Three Class Example: One-vs-Rest

/N

@ Examine “Class 2 vs Rest”

o Predicts everything to be “Not 2"
o If it predicted some “2", then it would get many more “Not 2" incorrect.
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Linear Classifers: Binary and Multiclass

One-vs-Rest: Predictions

@ Score for class i/ is
fi(x) = (wi, x) = || wil[| x| cosB;,
where 0; is the angle between x and w;.
@ Predict class i that has highest f;(x).
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Linear Classifers: Binary and Multiclass

One-vs-Rest: Class Boundaries

e For simplicity, we've assumed ||w || = [|wa|| = ||ws]].
@ Then ||w;|| and ||x|| are equal for all scores.

= x is classified by whichever has largest cos; (i.e. 0; closest to 0)
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Linear Classifers: Binary and Multiclass

One-vs-Rest: Class Boundaries

@ This approach doesn't work well in this instance.
@ Can we fix it by changing our base hypothesis space?
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The Linear Multiclass Hypothesis Space

o Base Hypothesis Space: H = {x— w'x|w € R7}.

e Linear Multiclass Hypothesis Space (for k classes):

F = {x»—>argmaxh,-(x) | hi,... he € ﬂ{}

1

@ What's the action space here?
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Linear Classifers: Binary and Multiclass

One-vs-Rest: Class Boundaries

@ Is this a failure of the hypothesis space or the learning algorithm?

o (A learning algorithm chooses the hypothesis from the hypothesis space.)
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Linear Classifers: Binary and Multiclass

A Solution with Linear Functions

@ This works... so the problem is not with the hypothesis space.

@ How can we get a solution like this?
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Multiclass Predictors
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Multiclass Hypothesis Space

e Base Hypothesis Space: H ={h: X — R} (“score functions”).
e Multiclass Hypothesis Space (for k classes):

F= {x»—>argmaxh,—(x) | hi,... hy € TH}

1

@ hj(x) scores how likely x is to be from class i.
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Multiclass Hypothesis Space: Reframed

@ A slight reframing turns out to be more convenient down the line
@ General Output Space: Y

e egY={1,..., k} for multiclass
@ Base Hypothesis Space: H={h: X xY — R}

e gives compatibility score between input x and output y

@ Multiclass Hypothesis Space

F=(xr—argmaxh(x,y)|heH
yeY

Now we're back to a single score function.

Takes x and y and evalutes their compatibility.
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Learning in a Multiclass Hypothesis Space: In Words

Base Hypothesis Space: H={h: X xY — R}
Training data: (x1,y1), (x2,¥2), ..., (Xn, ¥n)
Learning process chooses h € H.

What type of h do we want?

Want h(x,y) to be large when x has label y, small otherwise.
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Learning in a Multiclass Hypothesis Space: In Math

@ h(x,y) classifies(x;, y;) correctly iff

h(xi,yi) > h(xi,y)Vy # yi
@ h should give higher score for correct y than for all other y € Y.

@ An equivalent condition is the following:

h(xi, yi) > maxh(x;, y)
Y#Yi

o First idea for objective function:
min { [h(x,-,y,-) — m;xh(x,-,y)

hed 4 Y7FYi

i=1

David Rosenberg (New York University) DS-GA 1003 March 7, 2017 23 / 52
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Linear Hypothesis Space

Linear Multiclass Prediction Function

@ A linear class-sensitive score function is given by
h(x,y) = (w,¥(x,y)),
where ¥(x,y) : X x Y — R? is a class-sensitive feature map.

e Linear Multiclass Hypothesis Space

F =< x—argmax(w,¥(x,y)) |we R
yeY

o Y¥(x,y) extracts features relevant to how compatible y is with x.

@ Final compatibility score must be extracted linearly from ¥(x,y).
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Example: X = R2 Yy ={1,2,3}

o wy = (—%?) wa = (0,1), wy = (7272)

@ Prediction function: (xi,x2) — argmax;eqy 2.3} (Wi, (x1,x2)).

o How can we get this into the form x — argmax ¢y (w,¥(x, y))
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Linear Hypothesis Space

The Multivector Construction

e What if we stack w;'s together:

we | Y2 V2 o V22
N 2 2\'/2’2

W_/WZH/_/
w1 w3

@ And then do the following: ¥:R? x {1,2,3} — R® defined by

Y(x,1) := (x1,%,0,0,0,0)
Y(x,2) = (0,0,x1,x,0,0)
Y(x,3) = (0,0,0,0, x1,x2)

@ Then (w,¥(x,y)) = (w,,x), which is what we want.
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Linear Hypothesis Space

Natural Language Processing Example

@ X ={All possible words}.

e Y={NOUN,VERB,ADJECTIVE,ADVERB,ARTICLE,PREPOSITION}.
o Features of x € X: [The word itself], ENDS IN ly, ENDS IN ness, ...

o Y(x,y) = (W1(x,y), ¥a(x,y), 3(x,y),.... Palx,y)):

1(x = apple AND y = NOUN)

1(x =run AND y =NOUN)

1(x =run AND y = VERB)

1(x ENDS IN |y AND y =ADVERB)

e eg. W(x=run,y=NOUN)=(0,1,0,0,...)
o After training, what would you guess corresponding wy, wo, ws, wy to be?
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NLP Example: How does it work?

o W(x,y) = (W1(x,y), ¥a(x,y), ¥3(x,y), ..., balx,y)) € RY:
‘“Pi(x,y) = 1(x=apple AND y = NOUN)
Po(x,y) = 1(x=run AND y =NOUN)

o After training, we've learned w € RY. Say w = (5,3,1,4,...)
@ To predict label for x = apple, we compute scores for each y € Y:

(w,¥(apple, NOUN))
(w,¥(apple, VERB))
(w,¥(apple, ADVERB))

@ Predict class that gives highest score.
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Another Approach: Use Label Features

What if we have a very large number of classes?

Make features for the classes.

@ Common in advertising

e X: User and user context
e Y: A large set of banner ads

@ Suppose user x is shown many banner ads.

@ We want to predict which one the user will click on.

@ Possible features:
P1(x,y) = 1(x interested in sports AND y relevant to sports)
Po(x,y) = 1(x is in target demographic group of y)
P3(x,y) = 1(x previously clicked on ad from company sponsoring y)
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TF-IDF Features for News Article Classification

@ X ={news articles}
e Y ={politics, sports, entertainment, world news, local news} [TOPICS]
@ Want to use the words in article x to predict topic y.

@ The Term-Frequency of word w in document x, denoted
TF(w,x),

is the numer of times word w occurs in document x.
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Linear Hypothesis Space

TF-IDF Features for News Article Classification

@ The Document-Frequency of word w in class y, denoted
DF(w,y),

is the number of documents containing word w NOT in topic y.
@ The TF-IDF feature for word w is then defined as

DF(W.y)> '

where m is the total number of documents in training set.
@ (NOTE: There are many other variations of TF-IDF).

bw(x,y) = TF(w,x) |0g<
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TF-IDF: Things to note

@ Suppose we have d words in our vocabulary and k topic classes.
@ Suppose we have a TF-IDF feature for each word (and no other features).
@ What's the dimension of ¥(x, y)?
@ We have one TF-IDF for each word.
@ Recall our multivector-style NLP features:
Pa(x,¥) = 1(x=run AND y = NOUN)
P3(x,y) = 1(x=run AND y =VERB)

If made this “TF-IDF" style, it would like

WPx—run(x,y) = 1(x =run) x (compatibility of "run" with class y)

David Rosenberg (New York University) DS-GA 1003 March 7, 2017 33 /52



Linear Multiclass SVM
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The Margin for Multiclass

o Let h:X xY — R be our class-sensitive score function.

@ Define a “margin” between correct class and each other class:

Definition

The margin of score function h on the ith example (x;, y;) for class y is

m;.y (h) = h(x;, yi) — h(xi, y).

e Want mj ,(h) to be large and positive for all y # y;.

@ For our linear hypothesis space, margin is

miy(w) = (w,¥(x;,y)) — (w,¥(x;, y))
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Multiclass SVM with Hinge Loss

@ Recall binary SVM (without bias term):

n

N T
min —||wl||*+ — 1—yiw' x;
WERd2 n; ’H/—L

margin/

o [Recall (x), =max(0,x)]
e Multiclass SVM (Version 1):

2
min w max (1—m;
min || 1=+ E iy(w)),

where m; ,(w) = (w,¥(x;,yi)) — (W, ¥Y(x;,y)).
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Linear Multiclass SVM

Class-Sensitive Loss
@ In multiclass, some misclassifications may be worse than others.
@ Rather than 0/1 Loss, we may be interested in a more general loss
A:YxA— RO

@ We can use this A as our target margin for multiclass SVM.
e Multiclass SVM (Version 2):

1 5 C 2
WrTéISQIIWH +n;myaxm(y;,y)—m;,y(W))+

@ We can think of A(y;,y) as the “target margin” for example i and class y because if each
margin m;, (w) meets or exceeds its corresponding target A(y;,y), then we don't incur a
loss on example /.
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Linear Multiclass SVM

Geometric Interpretation

e Prediction is given by argmax,cy (w,¥(x,y)).
@ Note it's unchanged if we replace w by w/||w||.
e For simplicity, let's assume ||w|| = 1.

@ Then score function (w,¥(x,y)) = ||¥(x, y)| cos® = Proj,, ¥(x,y).

T LP('X\iU}) -

|
|
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Linear Multiclass SVM

Geometric Interpretation

e W maps each x € X to |Y| different vectors in RY.
e For example (x,y), we want margins for all y’ # y to exceed target margin:

(W, ¥(x,y)—(w.¥(x,y")) = Aly.y")

Figure from Section 17.2.4 from Shalev-Schwartz and Ben-David's Understanding Machine Learning
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Interlude: Is This Worth The Hassle Compared to One-vs-All?

Interlude: Is This Worth The Hassle Compared to One-vs-All? J

David Rosenberg (New York University) DS-GA 1003 March 7, 2017 40 / 52



Recap: What Have We Got?

@ Problem: Multiclass classification Y ={1,..., K}

@ Solution 1: One-vs-All.

e Train K models: hi(x),..., hx(x): X — R.
o Predict with argmax, cy hy (x).
o Gave simple example where this fails for linear classifiers

@ Solution 2: Multiclass

e Train one model: h(x,y): X xY — R.
o Prediction is involves solving argmax, ¢y h(x,y).
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Interlude: Is This Worth The Hassle Compared to One-vs-All?

Does it work better in practice?

e Paper by Rifkin & Klautau: “In Defense of One-Vs-All Classification” (2004)
o Extensive experiments, carefully done
o albeit on relatively small UCI datasets

e Suggests one-vs-all works just as well in practice

o (or at least, the advantages claimed by earlier papers for multiclass methods were not
compelling)

o Compared

e many multiclass frameworks (including the one we discuss)
e one-vs-all for SVMs with RBF kernel
o one-vs-all for square loss with RBF kernel (for classification!)

o All performed roughly the same
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Interlude: Is This Worth The Hassle Compared to One-vs-All?

Why Are We Bothering with Multiclass?

@ The framework we have developed for multiclass

e class sensitive score functions
e multiclass margin
e target margin

@ Generalizes to situations where one-vs-all is computationally intractable.

March 7, 2017 43 / 52

David Rosenberg (New York University) DS-GA 1003



Introduction to Structured Prediction

Introduction to Structured Prediction J

David Rosenberg (New York University) DS-GA 1003 March 7, 2017 44 / 52



Introduction to Structured Prediction

Part-of-speech (POS) Tagging

e Given a sentence, give a part of speech tag for each word:

Yo

x | [START] He eats | apples

— ~~ N~ | ——
X0 X1 x2 X3

y | [START] | Pronoun | Verb | Noun

N—— | Y~~~
Y1 y2 y3

e V ={all English words} U{[START],"."}
o P ={START, Pronoun,Verb,Noun,Adjective}
e X=V" n=1,2,3,... [Word sequences of any length]

e Y="P",n=1,2,3,...[Part of speech sequence of any length]

David Rosenberg (New York University)
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Structured Prediction

@ A structured prediction problem is a multiclass problem in which Y is very large, but has
(or we assume it has) a certain structure.

e For POS tagging, Y grows exponentially in the length of the sentence.

@ Typical structure assumption: The POS labels form a Markov chain.

o ie. Ynt1lyn Yn—1,..., )0 is the same as y,1 | yp.
e More on this in several weeks or in DS-GA 1005.
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Introduction to Structured Prediction

Local Feature Functions: Type 1

@ A “type 1" local feature only depends on

o the label at a single position, say y; (label of the ith word) and
e x at any position

@ Example:
¢1(i,x,yi) = 1(x; =runs)1(y; = Verb)
$2(i,x,yi) = 1(x; =runs)1(y; = Noun)
d3(i,x,y;)) = 1(x;_1 =He)l(x; =runs)1(y; = Verb)
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Introduction to Structured Prediction

Local Feature Functions: Type 2

o A “type 2" local feature only depends on

o the labels at 2 consecutive positions: y; ;1 and y;
e x at any position

o Example:

01(/,x,yi-1,¥i) = L1(yi—1 = Pronoun)1(y; = Verb)
02(i,x,yi—1,¥i) = 1(yi—1 =Pronoun)1(y; = Noun)
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Introduction to Structured Prediction

Local Feature Vector and Compatibility Score

@ At each position i in sequence, define the local feature vector:

Yilx,yi1.yi) = (d1li,x, i), d2(i,x, yi), ...,
010/, x,yi—1,yi), 020/, x,yi—1.yi),-..)

@ Local compatibility score for (x,y) at position i is (w,¥;(x,yi—1,y;)).

David Rosenberg (New York University) DS-GA 1003 March 7, 2017 49 / 52



Sequence Compatibility Score

@ The compatibility score for the pair of sequences (x, y) is the sum of the local
compatibility scores:

> (W Yilx,yio1, i)

i

— <W,Z‘¥;(X,y;1,yi)>

= (w,¥(x,y)),

where we define the sequence feature vector by

Yix,y) =) Yilx,yi1.y).

@ So we see this is a special case of linear multiclass prediction.
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Introduction to Structured Prediction

Sequence Target Loss

@ How do we assess the loss for prediction sequence y’ for example (x, y)?

e Hamming loss is common:

lyl
Z YI#y:
=1

@ Could generalize this as

Aly.y") == 8yiy/)
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Introduction to Structured Prediction

What remains to be done?

@ To compute predictions, we need to find

argmax (w,¥(x,y)).
yeY

@ This is straightforward for [Y| small.

Now [Y| is exponentially large.

Because ¥ breaks down into local functions only depending on 2 adjacent labels,

e we can solve this efficiently using dynamic programming.
o (Similar to Viterbi decoding.)

Learning can be done with SGD and a similar dynamic program.
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