Bagging and Random Forests

David Rosenberg

New York University

March 28, 2017
The Benefits of Averaging
A Lousy Estimator

- Let Z, Z_1, \ldots, Z_n i.i.d. $\mathbb{E}Z = \mu$ and $\text{Var}Z = \sigma^2$.
- We could use any single Z_i to estimate μ.
- Performance?
- Unbiased: $\mathbb{E}Z_i = \mu$.
- Standard error of estimator would be σ.
 - The **standard error** is the standard deviation of the sampling distribution of a statistic.
 - $\text{SD}(Z) = \sqrt{\text{Var}(Z)} = \sqrt{\sigma^2} = \sigma$.
Let Z, Z_1, \ldots, Z_n i.i.d. $\mathbb{E}Z = \mu$ and $\text{Var}Z = \sigma^2$.

Let's consider the average of the Z_i's.

- Average has the same expected value but smaller standard error:

$$\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} Z_i\right] = \mu \quad \text{Var}\left[\frac{1}{n} \sum_{i=1}^{n} Z_i\right] = \frac{\sigma^2}{n}.$$

- Clearly the average is preferred to a single Z_i as estimator.
- Can we apply this to reduce variance of general decision functions?
Suppose we have B independent training sets from the same distribution.

Learning algorithm gives B decision functions: $\hat{f}_1(x), \hat{f}_2(x), \ldots, \hat{f}_B(x)$.

Define the average prediction function as:

$$\hat{f}_{\text{avg}} = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b$$

What’s random here?
Averaging Independent Prediction Functions

- Fix some $x \in \mathcal{X}$.
- Then average prediction on x is
 $$
 \hat{f}_{\text{avg}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(x).
 $$

- Consider $\hat{f}_{\text{avg}}(x)$ and $\hat{f}_1(x), \ldots, \hat{f}_B(x)$ as random variables (since training data random).
- $\hat{f}_1(x), \ldots, \hat{f}_B(x)$ are i.i.d.
- $\hat{f}_{\text{avg}}(x)$ and $\hat{f}_b(x)$ have the same expected value, but
- $\hat{f}_{\text{avg}}(x)$ has smaller variance:
 $$
 \text{Var}(\hat{f}_{\text{avg}}(x)) = \frac{1}{B^2} \text{Var}\left(\sum_{b=1}^{B} \hat{f}_b(x) \right) = \frac{1}{B} \text{Var}\left(\hat{f}_1(x) \right).
 $$
Averaging Independent Prediction Functions

- Using
 \[\hat{f}_{\text{avg}} = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b \]

 seems like a win.
- But in practice we don’t have \(B \) independent training sets...
- Instead, we can use the bootstrap....
Review: Bootstrap
The Bootstrap Sample

Definition

A **bootstrap sample** from \mathcal{D}_n is a sample of size n drawn *with replacement* from \mathcal{D}_n.

- In a bootstrap sample, some elements of \mathcal{D}_n
 - will show up multiple times,
 - some won’t show up at all.
- Each X_i has a probability $(1 - 1/n)^n$ of not being selected.
- Recall from analysis that for large n,

$$\left(1 - \frac{1}{n}\right)^n \approx \frac{1}{e} \approx .368.$$

- So we expect ~63.2% of elements of \mathcal{D} will show up at least once.
The Bootstrap Method

Definition

A bootstrap method is when you simulate having B independent samples from P by taking B bootstrap samples from the sample D_n.

- Given original data D_n, compute B bootstrap samples D^1_n, \ldots, D^B_n.
- For each bootstrap sample, compute some function $\phi(D^1_n), \ldots, \phi(D^B_n)$.
- Work with these values as though D^1_n, \ldots, D^B_n were i.i.d. P.
- Amazing fact: Things often come out very close to what we’d get with independent samples from P.

David Rosenberg (New York University)
Bagging
Bagging

- Draw B bootstrap samples D^1, \ldots, D^B from original data \mathcal{D}.
- Let $\hat{f}_1, \hat{f}_2, \ldots, \hat{f}_B$ be the decision functions for each set.
- The **bagged decision function** is a combination of these:

$$\hat{f}_{\text{avg}}(x) = \text{Combine}(\hat{f}_1(x), \hat{f}_2(x), \ldots, \hat{f}_B(x))$$

- How might we combine
 - decision functions for regression?
 - binary class predictions?
 - binary probability predictions?
 - multiclass predictions?

- Bagging proposed by Leo Breiman (1996).
Bagging for Regression

- Draw B bootstrap samples D^1, \ldots, D^B from original data \mathcal{D}.
- Let $\hat{f}_1, \hat{f}_2, \ldots, \hat{f}_B : \mathcal{X} \to \mathbb{R}$ be the predictions functions for each set.
- Bagged prediction function is given as

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(x).$$

- Empirically, \hat{f}_{bag} often performs similarly to what we’d get from training on B independent samples:
 - $\hat{f}_{\text{bag}}(x)$ has same expectation as $\hat{f}_1(x)$, but
 - $\hat{f}_{\text{bag}}(x)$ has smaller variance than $\hat{f}_1(x)$
Out-of-Bag Error Estimation

- Each bagged predictor is trained on about 63% of the data.
- Remaining 37% are called **out-of-bag (OOB)** observations.
- For ith training point, let

 $$S_i = \{ b \mid D^b \text{ does not contain } i\text{th point} \}.$$

- The OOB prediction on x_i is

 $$\hat{f}_{\text{OOB}}(x_i) = \frac{1}{|S_i|} \sum_{b \in S_i} \hat{f}_b(x).$$

- The OOB error is a good estimate of the test error.
- OOB error is similar to cross validation error – both are computed on training set.
Bagging Classification Trees

- Input space $\mathcal{X} = \mathbb{R}^5$ and output space $\mathcal{Y} = \{-1, 1\}$.
- Sample size $N = 30$ (simulated data)

From ESL Figure 8.9
Comparing Classification Combination Methods

- Two ways to combine classifications: consensus class or average probabilities.

From ESL Figure 8.10
Terms “Bias” and “Variance” in Casual Usage
(Warning! Confusion Zone!)

- Restricting the hypothesis space \mathcal{F} "biases" the fit
 - towards a simpler model and
 - away from the best possible fit of the training data.

- Full, unpruned decision trees have very little bias.
- Pruning decision trees introduces a bias.
- **Variance** describes how much the fit changes across different random training sets.
 - If different random training sets give very similar fits, then algorithm has high **stability**.
 - Decision trees are found to be high variance (i.e. not very stable).
Hope is that bagging reduces variance without making bias worse.

General sentiment is that bagging helps most when
- Relatively unbiased base prediction functions
- High variance / low stability
 - i.e. small changes in training set can cause large changes in predictions

Hard to find clear and convincing theoretical results on this

But following this intuition leads to improved ML methods, e.g. Random Forests
Random Forests
Recall the Motivating Principal of Bagging

- Averaging $\hat{f}_1, \ldots, \hat{f}_B$ reduces variance, if they’re based on i.i.d. samples from $P_{X \times Y}$.
- Bootstrap samples are
 - independent samples from the training set, but
 - are not independent samples from $P_{X \times Y}$.
- This dependence limits the amount of variance reduction we can get.
- Would be nice to reduce the dependence between \hat{f}_i’s...
Variance of a Mean of Correlated Variables

- For \(Z, Z_1, \ldots, Z_n \) i.i.d. with \(\mathbb{E} Z = \mu \) and \(\text{Var} Z = \sigma^2 \),
 \[
 \mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} Z_i \right] = \mu \quad \text{Var} \left[\frac{1}{n} \sum_{i=1}^{n} Z_i \right] = \frac{\sigma^2}{n}.
 \]

- What if \(Z \)'s are correlated?
- Suppose \(\forall i \neq j, \text{Corr}(Z_i, Z_j) = \rho \). Then
 \[
 \text{Var} \left[\frac{1}{n} \sum_{i=1}^{n} Z_i \right] = \rho \sigma^2 + \frac{1-\rho}{n} \sigma^2.
 \]
 For large \(n \), the \(\rho \sigma^2 \) term dominates – limits benefit of averaging.
Random Forests

Main idea of random forests

Use bagged decision trees, but modify the tree-growing procedure to reduce the correlation between trees.

- **Key step** in random forests:
 - When constructing **each tree node**, restrict choice of splitting variable to a randomly chosen subset of features of size m.
 - Typically choose $m \approx \sqrt{p}$, where p is the number of features.
 - Can choose m using cross validation.
Random Forest: Effect of m size

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.