Boosting

David Rosenberg

New York University

March 28, 2017
Boosting Introduction
Ensembles: Parallel vs Sequential

- Ensemble methods combine multiple models

Parallel ensembles: each model is built independently
 - e.g. bagging and random forests
 - Main Idea: Combine many (high complexity, low bias) models to reduce variance

Sequential ensembles:
 - Models are generated sequentially
 - Try to add new models that do well where previous models lack
Overview

- AdaBoost algorithm
 - weighted training sets and weighted classification error
- AdaBoost minimizes training error
- AdaBoost train/test learning curves (seems resistant to overfitting)
- (If time) AdaBoost is minimizing exponential loss function (but in a special way)

Tomorrow
- Forward stagewise additive modeling
- Gradient Boosting (generalizes beyond exponential loss function)
The Boosting Question: Weak Learners

- A **weak learner** is a classifier that does slightly better than random.
- Weak learners are like “rules of thumb”:
 - If an email has “Viagra” in it, more likely than not it’s spam.
 - Email from a friend is probably not spam.
 - A linear decision boundary.
- Can we **combine** a set of weak classifiers to form a single classifier that makes accurate predictions?
 - Posed by Kearns and Valiant (1988,1989):
 - Yes! **Boosting** solves this problem. [Rob Schapire (1990).]

(We mention “weak learners” for historical context, but we’ll avoid this terminology and associated assumptions...)
AdaBoost: The Algorithm
AdaBoost: Setting

- AdaBoost is for **binary classification**: \(y = \{-1, 1\} \)
- **Base hypothesis space** \(\mathcal{H} = \{h : \mathcal{X} \rightarrow \{-1, 1\}\} \).
 - **Note**: not producing a score, but an actual class label.
 - we’ll call it a **base learner**
 - (when base learner satisfies certain conditions, it’s called a “weak learner”)
- Typical base hypothesis spaces:
 - **Decision stumps** (tree with a single split)
 - Trees with few terminal nodes
 - Linear decision functions
AdaBoost: The Algorithm

Weighted Training Set

- Training set $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$.
- Weights (w_1, \ldots, w_n) associated with each example.
- **Weighted empirical risk**:
 \[
 \hat{R}_n^w(f) = \frac{1}{W} \sum_{i=1}^{n} w_i \ell(f(x_i), y_i) \quad \text{where} \quad W = \sum_{i=1}^{n} w_i
 \]
- Can train a model to minimize weighted empirical risk.
- What if model cannot conveniently be trained to reweighted data?
- Can sample a new data set from \mathcal{D} with probabilities $(w_1/W, \ldots w_n/W)$.
AdaBoost - Rough Sketch

- Training set $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$.
- Start with equal weight on all training points $w_1 = \cdots = w_n = 1$.
- Repeat for $m = 1, \ldots, M$:
 - Find base classifier $G_m(x)$ that tries to fit weighted training data (but may not do that well)
 - Increase weight on the points $G_m(x)$ misclassifies
- So far, we’ve generated M classifiers: $G_1(x), \ldots, G_m(x)$.
AdaBoost: The Algorithm

AdaBoost: Schematic

Final Classifier

\[G(x) = \text{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right] \]

- **Weighted Sample** \(\rightarrow G_M(x) \)
- **Weighted Sample** \(\rightarrow G_3(x) \)
- **Weighted Sample** \(\rightarrow G_2(x) \)
- **Training Sample** \(\rightarrow G_1(x) \)

From ESL Figure 10.1
AdaBoost - Rough Sketch

- Training set $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$.
- Start with equal weight on all training points $w_1 = \cdots = w_n = 1$.
- Repeat for $m = 1, \ldots, M$:
 - Base learner fits weighted training data and returns $G_m(x)$
 - Increase weight on the points $G_m(x)$ misclassifies
- Final prediction $G(x) = \text{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$. (recall $G_m(x) \in \{-1, 1\}$)
- The α_m's are nonnegative,
 - larger when G_m fits its weighted \mathcal{D} well
 - smaller when G_m fits weighted \mathcal{D} less well
In round m, base learner gets a weighted training set.

- Returns a base classifier $G_m(x)$ that roughly minimizes weighted 0–1 error.

- The **weighted 0-1 error** of $G_m(x)$ is

$$
err_m = \frac{1}{W} \sum_{i=1}^{n} w_i 1(y_i \neq G_m(x_i)) \quad \text{where } W = \sum_{i=1}^{n} w_i.
$$

- Notice: $err_m \in [0, 1]$.

AdaBoost: Weighted Classification Error
AdaBoost: Classifier Weights

- The weight of classifier $G_m(x)$ is $\alpha_m = \ln \left(\frac{1 - \text{err}_m}{\text{err}_m} \right)$.

- Note that weight $\alpha_m \rightarrow 0$ as weighted error $\text{err}_m \rightarrow 0.5$ (random guessing).
AdaBoost: The Algorithm

AdaBoost: Example Reweighting

- We train G_m to minimize weighted error, and it achieves err_m.
- Then $\alpha_m = \ln \left(\frac{1-\text{err}_m}{\text{err}_m} \right)$ is the weight of G_m in final ensemble.
- Suppose w_i is weight of example i before training:
 - If G_m classifies x_i correctly, then w_i is unchanged.
 - Otherwise, w_i is increased as

 $w_i \leftarrow w_i e^{\alpha_m} = w_i \left(\frac{1 - \text{err}_m}{\text{err}_m} \right)$

 - For $\text{err}_m < 0.5$, this always increases the weight.
Any misclassified point has weight adjusted as $w_i \leftarrow w_i \left(\frac{1 - \text{err}_m}{\text{err}_m} \right)$.

The smaller err_m, the more we increase weight of misclassified points.
AdaBoost: Algorithm

Given training set $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$.

1. Initialize observation weights $w_i = 1$, $i = 1, 2, \ldots, n$.
2. For $m = 1$ to M:
 1. Base learner fits weighted training data and returns $G_m(x)$
 2. Compute **weighted empirical 0-1 risk**:

$$err_m = \frac{1}{W} \sum_{i=1}^{n} w_i 1(y_i \neq G_m(x_i)),$$
 where $W = \sum_{i=1}^{n} w_i$.

3. Compute $\alpha_m = \ln \left(\frac{1-err_m}{err_m} \right)$ [classifier weight]

4. Set $w_i \leftarrow w_i \cdot \exp[\alpha_m 1(y_i \neq G_m(x_i))]$, $i = 1, 2, \ldots, n$ [example weight adjustment]

3. Output $G(x) = \text{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.
AdaBoost with Decision Stumps

• After 1 round:

Figure: Plus size represents weight. Blackness represents score for red class.
AdaBoost with Decision Stumps

- After 3 rounds:

Figure: Plus size represents weight. Blackness represents score for red class.
AdaBoost with Decision Stumps

- After 120 rounds:

Figure: Plus size represents weight. Blackness represents score for red class.
Does AdaBoost Minimize Training Error?
AdaBoost: Does it actually minimize training error?

- Methods we’ve seen so far come in two categories:
 - Regularized empirical risk minimization (L1/L2 regression, SVM, kernelized versions)
 - Trees

- GD and SGD converge to minimizers of objective function on training data

- Trees achieve 0 training error unless same input occurs with different outputs
 - without any limit on tree complexity

- So far, AdaBoost is just an algorithm.

- Does an AdaBoost classifier $G(x)$ even minimize training error?

- Yes, if our weak classifiers have an “edge” over random.
Does AdaBoost Minimize Training Error?

AdaBoost: Does it actually minimize training error?

- Assume base classifier, $G_m(x)$ has $\text{err}_m \leq \frac{1}{2}$.
 - (Otherwise, let $G_m(x) \leftarrow -G_m(x)$.)

- Define the edge of classifier $G_m(x)$ at round m to be

 $$\gamma_m = \frac{1}{2} - \text{err}_m.$$

- Measures how much better than random G_m performs.
ADABoost: Does it actually minimize training error?

Theorem

The empirical 0-1 risk of the AdaBoost classifier $G(x)$ is bounded as

$$
\frac{1}{n} \sum_{i=1}^{n} 1(y_i \neq G(x)) \leq \prod_{m=1}^{M} \sqrt{1 - 4\gamma_m^2}.
$$

- What’s are the possible values for $\sqrt{1 - 4\gamma_m^2}$?
- Proof is an optional homework problem on Homework 6.
AdaBoost: Does it actually minimize training error?

Suppose \(\text{err}_m \leq 0.4 \) for all \(m \).

- Then the “edge” is \(\gamma_m = .5 - .4 = .1 \), and training error is bounded as follows:

\[
\frac{1}{n} \sum_{i=1}^{n} 1(y_i \neq G(x)) \leq \prod_{m=1}^{M} \sqrt{1 - 4(.1)^2} \approx (.98)^M
\]

- Bound decreases exponentially:

\[
.98^{100} \approx .133 \\
.98^{200} \approx .018 \\
.98^{300} \approx .002
\]

- With a consistent edge, training error decreases very quickly to 0.
“Base learner” plots error rates err_M on weighted training sets after M rounds of boosting

“Train error” is the training error of the combined classifier

“Theory bound” plots the training error bound given by the theorem

Figure 3.1 from *Boosting: Foundations and Algorithms* by Schapire and Freund.
Test Performance of Boosting
Typical Train / Test Learning Curves

- Might expect too many rounds of boosting to overfit:

![Graph showing typical train/test learning curves](image-url)
In typical performance, AdaBoost is surprisingly resistant to overfitting. Test continues to improve even after training error is zero!

From Rob Schapire's NIPS 2007 Boosting tutorial.

From Rob Schapire's NIPS 2007 Boosting tutorial.

David Rosenberg (New York University)

DS-GA 1003

March 28, 2017
Boosting Fits an Additive Model
AdaBoost produces a classification score function of the form

$$\sum_{m=1}^{M} \alpha_m G_m(x)$$

- each G_m is a **base classifier**
- The G_m’s are like basis functions, but they are learned from the data.
- Let’s move beyond classification models...
Adaptive Basis Function Model

- Base hypothesis space \mathcal{H}
- An adaptive basis function expansion over \mathcal{H} is

$$f(x) = \sum_{m=1}^{M} \nu_m h_m(x),$$

- $h_m \in \mathcal{H}$ chosen in a learning process ("adaptive")
- $\nu_m \in \mathbb{R}$ are expansion coefficients.

Note: We are taking linear combination of outputs of $h_m(x)$.
- Functions in $h_m \in \mathcal{H}$ must produce values in \mathbb{R} (or a vector space)
How to fit an adaptive basis function model?

- **Loss function**: $\ell(y, \hat{y})$

- **Base hypothesis space**: H of **real-valued** functions

- **Want to find**

 $$f(x) = \sum_{m=1}^{M} \nu_m h_m(x)$$

 that **minimizes empirical risk**

 $$\frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i))$$

- **We'll proceed in stages, adding a new h_m in every stage.**
Forward Stagewise Additive Modeling (FSAM)

- Start with $f_0 \equiv 0$.
- After $m-1$ stages, we have

$$f_{m-1} = \sum_{i=1}^{m-1} \nu_i h_i,$$

where $h_1, \ldots, h_{m-1} \in \mathcal{H}$.

- Want to find
 - **step direction** $h_m \in \mathcal{H}$ and
 - **step size** $\nu_i > 0$

- So that

$$f_m = f_{m-1} + \nu_i h_m$$

minimizes empirical risk.
Forward Stagewise Additive Modeling

1. Initialize \(f_0(x) = 0 \).
2. For \(m = 1 \) to \(M \):
 1. Compute:
 \[
 (\nu_m, h_m) = \arg \min_{\nu \in \mathbb{R}, h \in \mathcal{H}} \sum_{i=1}^{n} \ell \left(y_i, f_{m-1}(x_i) + \nu h(x_i) \right) + \text{new piece}.
 \]
 2. Set \(f_m = f_{m-1} + \nu_m h \).
3. Return: \(f_M \).
Exponential Loss and AdaBoost

- Take loss function to be
 \[\ell(y, f(x)) = \exp(-yf(x)). \]

- Let \(\mathcal{H} \) be our base hypothesis space of classifiers \(h : \mathcal{X} \rightarrow \{-1, 1\} \).
- Then Forward Stagewise Additive Modeling (FSAM) reduces to AdaBoost!
 - Proof on Homework #6 (and see HTF Section 10.4).
- Only difference:
 - AdaBoost gets whichever \(G_m \) the base learner returns from \(\mathcal{H} \) – no guarantees it’s best in \(\mathcal{H} \).
 - FSAM explicitly requires getting the best in \(\mathcal{H} \)
 \[G_m = \arg\min_{G \in \mathcal{H}} \sum_{i=1}^{N} w_i^{(m)} 1(y_i \neq G(x_i)) \]
Robustness and AdaBoost
Exponential Loss

- Note that exponential loss puts a very large weight on bad misclassifications.
AdaBoost / Exponential Loss: Robustness Issues

- When Bayes error rate is high (e.g. $P(f^*(X) \neq Y) = 0.25$)
 - e.g. there’s some intrinsic randomness in the label
 - e.g. training examples with same input, but different classifications.
- Best we can do is predict the most likely class for each X.
- Some training predictions should be wrong (because example doesn’t have majority class)
 - AdaBoost / exponential loss puts a lot of focus on getting those right
- Empirically, AdaBoost has degraded performance in situations with
 - high Bayes error rate, or when there’s
 - high “label noise”
- Logistic loss performs better in settings with high Bayes error
Population Minimizer
Population Minimizers

- In traditional statistics, the **population** refers to
 - the full population of a group, rather than a sample.
- In machine learning, the **population case** is the hypothetical case of
 - an infinite training sample from $P_{X \times Y}$.
- A **population minimizer** for a loss function is another name for the risk minimizer.
- For the exponential loss $\ell(m) = e^{-m}$, the population minimizer is given by
 \[
 f^*(x) = \frac{1}{2} \ln \frac{\mathbb{P}(Y = 1 \mid X = x)}{\mathbb{P}(Y = -1 \mid X = x)}
 \]
 (Short proof in KPM 16.4.1)
- By solving for $\mathbb{P}(Y = 1 \mid X = x)$, we can give probabilistic predictions from AdaBoost as well.
AdaBoost has the robustness issue because of the exponential loss.

- Logistic loss $\ell(m) = \ln(1 + e^{-m})$ has the same population minimizer.
 - But works better with high label noise or high Bayes error rate

- Population minimizer of SVM hinge loss is

$$f^*(x) = \text{sign} \left[\mathbb{P}(Y = 1 \mid X = x) - \frac{1}{2} \right].$$

- Because of the sign, we cannot solve for the probabilities.