Introduction to Statistical Learning Theory

David S. Rosenberg

Bloomberg ML EDU

September 29, 2017

David S. Rosenberg (Bloomberg ML EDU)

Decision Theory: High Level View

What types of problems are we solving?

- In data science problems, we generally need to:
 - Make a decision
 - Take an action
 - Produce some output
- Have some evaluation criterion

Actions

Definition

An action is the generic term for what is produced by our system.

Examples of Actions

- Produce a 0/1 classification [classical ML]
- Reject hypothesis that $\theta=0$ [classical Statistics]
- Written English text [image captioning, speech recognition, machine translation]
- What's an action for predicting where a storm will be in 3 hours?
- What's an action for a self-driving car?

Decision theory is about finding "optimal" actions, under various definitions of optimality.

Examples of Evaluation Criteria

- Is classification correct?
- Does text transcription exactly match the spoken words?
 - Should we give partial credit? How?
- How far is the storm from the prediction location? [for point prediction]
- How likely is the storm's location under the prediction? [for density prediction]

Real Life: Formalizing a Business Problem

- First two steps to formalizing a problem:
 - Define the action space (i.e. the set of possible actions)
 - 2 Specify the evaluation criterion.
- Formalization may evolve gradually, as you understand the problem better

Inputs

Most problems have an extra piece, going by various names:

- Inputs [ML]
- Covariates [Statistics]

Examples of Inputs

- A picture
- A storm's historical location and other weather data
- A search query

Inputs often paired with outputs or outcomes or labels

Examples of outcomes/outputs/labels

- Whether or not the picture actually contains an animal
- The storm's location one hour after query
- Which, if any, of suggested the URLs were selected

Typical Sequence of Events

Many problem domains can be formalized as follows:

- Observe input *x*.
- 2 Take action a.
- **Observe** outcome *y*.
- **④** Evaluate action in relation to the outcome: $\ell(a, y)$.

Note

- Outcome y is often independent of action a
- But this is not always the case:
 - search result ranking
 - automated driving

Formalization: The Spaces

The Three Spaces:

- Input space: \mathfrak{X}
- \bullet Action space: ${\cal A}$
- Outcome space: \mathcal{Y}

Concept check:

- What are the spaces for linear regression?
- What are the spaces for logistic regression?
- What are the spaces for a support vector machine?

Some Formalization

The Spaces

• \mathfrak{X} : input space • \mathfrak{Y} : outcome space • \mathcal{A} : action space

Decision Function

A decision function (or prediction function) gets input $x \in \mathcal{X}$ and produces an action $a \in \mathcal{A}$:

$$egin{array}{rccc} f: & \mathfrak{X} & o & \mathcal{A} \ & x & \mapsto & f(x) \end{array}$$

Loss Function

A loss function evaluates an action in the context of the outcome y.

$$\ell: \mathcal{A} \times \mathcal{Y} \rightarrow \mathsf{R} \ (a, y) \mapsto \ell(a, y)$$

Real Life: Formalizing a "Data Science" Problem

• First two steps to formalizing a problem:

- **O** Define the *action space* (i.e. the set of possible actions)
- 2 Specify the evaluation criterion.
- When a "stakeholder" asks the data scientist to solve a problem, she
 - may have an opinion on what the action space should be, and
 - hopefully has an opinion on the evaluation criterion, but
 - she really cares about your producing a "good" decision function.
- Typical sequence:
 - Stakeholder presents problem to data scientist
 - 2 Data scientist produces decision function
 - S Engineer deploys "industrial strength" version of decision function

- Loss function ℓ evaluates a single action
- How to evaluate the decision function as a whole?
- We will use the standard statistical learning theory framework.

Statistical Learning Theory

A Simplifying Assumption

- Assume action has no effect on the output
 - includes all traditional prediction problems
 - what about stock market prediction?
 - what about stock market investing?
- What about fancier problems where this does not hold?
 - often can be reformulated or "reduced" to problems where it does hold
 - see literature on reinforcement learning

Setup for Statistical Learning Theory

- Assume there is a data generating distribution $P_{\mathfrak{X} \times \mathfrak{Y}}$.
- All input/output pairs (x, y) are generated i.i.d. from $P_{\mathcal{X} \times \mathcal{Y}}$.
- i.i.d. means "independent, and identically distributed"; practically it means
 - no covariate shift
 - no concept drift
- Want decision function f(x) that generally "does well on average":

 $\ell(f(x), y)$ is usually small, in some sense

• How can we formalize this?

Definition

The **risk** of a decision function $f : \mathcal{X} \to \mathcal{A}$ is

 $R(f) = \mathbb{E}\ell(f(x), y).$

In words, it's the expected loss of f on a new exampe (x, y) drawn randomly from $P_{\mathcal{X} \times \mathcal{Y}}$.

Risk function cannot be computed

Since we don't know $P_{\mathcal{X} \times \mathcal{Y}}$, we cannot compute the expectation. But we can estimate it...

The Bayes Decision Function

Definition

A Bayes decision function $f^*: \mathcal{X} \to \mathcal{A}$ is a function that achieves the *minimal risk* among all possible functions:

 $f^* = \arg\min_{f} R(f),$

where the minimum is taken over all functions from ${\mathfrak X}$ to ${\mathcal A}.$

- The risk of a Bayes decision function is called the **Bayes risk**.
- A Bayes decision function is often called the "target function", since it's the best decision function we can possibly produce.

Example 1: Least Squares Regression

- spaces: $\mathcal{A} = \mathcal{Y} = \mathbf{R}$
- square loss:

$$\ell(a, y) = (a - y)^2$$

• mean square **risk**:

$$R(f) = \mathbb{E}[(f(x) - y)^2]$$

(homework \implies) = $\mathbb{E}[(f(x) - \mathbb{E}[y|x])^2] + \mathbb{E}[(y - \mathbb{E}[y|x])^2]$

• target function:

$$f^*(x) = \mathbb{E}[y|x]$$

Example 2: Multiclass Classification

• spaces:
$$A = Y = \{0, 1, ..., K - 1\}$$

• 0-1 loss:

$$\ell(a, y) = 1(a \neq y) := \begin{cases} 1 & \text{if } a \neq y \\ 0 & \text{otherwise.} \end{cases}$$

• risk is misclassification error rate

$$R(f) = \mathbb{E}[\mathbf{1}(f(x) \neq y)] = \mathbf{0} \cdot \mathbb{P}(f(x) = y) + \mathbf{1} \cdot \mathbb{P}(f(x) \neq y)$$
$$= \mathbb{P}(f(x) \neq y)$$

• target function is the assignment to the most likely class

$$f^*(x) = \underset{1 \leqslant k \leqslant K}{\arg \max} \mathbb{P}(y = k \mid x)$$

But we can't compute the risk!

• Can't compute $R(f) = \mathbb{E}\ell(f(x), y)$ because we **don't know** $P_{\mathcal{X} \times \mathcal{Y}}$.

• One thing we can do in ML/statistics/data science is

assume we have sample data.

Let $\mathcal{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$ be drawn i.i.d. from $\mathcal{P}_{\mathfrak{X} \times \mathfrak{Y}}$.

• Let's draw some inspiration from the Strong Law of Large Numbers: If z, z_1, \ldots, z_n are i.i.d. with expected value $\mathbb{E}z$, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n z_i = \mathbb{E}z$$

with probability 1.

The Empirical Risk Functional

Let $\mathcal{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$ be drawn i.i.d. from $\mathcal{P}_{\mathfrak{X} \times \mathfrak{Y}}$.

Definition

The **empirical risk** of $f : \mathcal{X} \to \mathcal{A}$ with respect to \mathcal{D}_n is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

By the Strong Law of Large Numbers,

$$\lim_{n\to\infty}\hat{R}_n(f)=R(f),$$

almost surely. That's a start... We want risk minimizer, is empirical risk minimizer close enough?

Definition

A function \hat{f} is an empirical risk minimizer if

$$\hat{f} = \mathop{\arg\min}_{f} \hat{R}_{n}(f),$$

where the minimum is taken over all functions.

 $P_{\mathcal{X}} = \text{Uniform}[0, 1], Y \equiv 1$ (i.e. Y is always 1).

 $\mathcal{P}_{\mathcal{X} \times \mathcal{Y}}.$

David S. Rosenberg (Bloomberg ML EDU)

 $P_{\mathcal{X}} = \text{Uniform}[0, 1], Y \equiv 1$ (i.e. Y is always 1).

A sample of size 3 from $\mathcal{P}_{\mathcal{X} \times \mathcal{Y}}$.

David S. Rosenberg (Bloomberg ML EDU)

 $P_{\mathcal{X}} = \text{Uniform}[0, 1], Y \equiv 1 \text{ (i.e. } Y \text{ is always } 1\text{)}.$

A proposed decision function:

$$\hat{f}(x) = 1(x \in \{0.25, 0.5, 0.75\}) = \begin{cases} 1 & \text{if } x \in \{0.25, .5, .75\} \\ 0 & \text{otherwise} \end{cases}$$

 $P_{\mathcal{X}} = \text{Uniform}[0, 1], Y \equiv 1$ (i.e. Y is always 1).

Under square loss or 0/1 loss: \hat{f} has Empirical Risk = 0 and Risk = 1.

David S. Rosenberg (Bloomberg ML EDU)

- ERM led to a function f that just memorized the data.
- How to spread information or "generalize" from training inputs to new inputs?
- Need to smooth things out somehow...
 - A lot of modeling is about spreading and extrapolating information from one part of the input space $\mathcal X$ into unobserved parts of the space.
- One approach: "Constrained ERM"
 - Instead of minimizing empirical risk over all decision functions,
 - constrain to a particular subset, called a hypothesis space.

Hypothesis Spaces

Definition

A hypothesis space \mathcal{F} is a set of functions mapping $\mathfrak{X} \to \mathcal{A}$.

• It is the collection of decision functions we are considering.

Want Hypothesis Space that...

- Includes only those functions that have desired "regularity"
 - e.g. smoothness, simplicity
- Easy to work with

Example hypothesis spaces?

Constrained Empirical Risk Minimization

- \bullet Hypothesis space ${\mathfrak F},$ a set of [decision] functions mapping ${\mathfrak X} \to {\mathcal A}$
- Empirical risk minimizer (ERM) in \mathcal{F} is

$$\hat{f}_n = \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

• Risk minimizer in ${\mathcal F}$ is $f_{{\mathcal F}}^* \in {\mathcal F}$, where

$$f_{\mathcal{F}}^* = \underset{f \in \mathcal{F}}{\arg\min} \mathbb{E}\ell(f(x), y).$$