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Unconstrained Optimization

Setting

Objective function f : Rd → R is differentiable.
Want to find

x∗ = arg min
x∈Rd

f (x)
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The Gradient

Let f : Rd → R be differentiable at x0 ∈ Rd .

The gradient of f at the point x0, denoted ∇x f (x0), is the direction to move in for the
fastest increase in f (x), when starting from x0.

Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.
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Gradient Descent

Gradient Descent
Initialize x = 0
repeat

x ← x − η︸︷︷︸
step size

∇f (x)

until stopping criterion satisfied
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Gradient Descent Path
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Gradient Descent: Step Size

A fixed step size will work, eventually, as long as it’s small enough (roughly - details to
come)

Too fast, may diverge
In practice, try several fixed step sizes

Intuition on when to take big steps and when to take small steps?
Demo.
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Convergence Theorem for Fixed Step Size

Theorem

Suppose f : Rd → R is convex and differentiable, and ∇f is Lipschitz continuous with
constant L> 0, i.e.

‖∇f (x)−∇f (y)‖6 L‖x − y‖

for any x ,y ∈ Rd . Then gradient descent with fixed step size t 6 1/L converges. In particular,

f (x(k))− f (x∗)6
‖x(0)− x∗‖2

2tk
.
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Step Size: Practical Note

Although a 1/L step-size guarantees convergence,
it may be much slower than necessary.

May be worth trying larger step sizes as well.

But math tells us, no need for anything smaller.
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Gradient Descent: Questions to Ponder

“Empirically η= 0.1 often works well” (says an ML textbook)

How can one rate work well for most functions?

Suppose η= 0.1 works well for f (x), what about g(x) = f (10x)?

Do we want bigger steps or smaller steps?
How does the magnitude of the gradient compare between g(x) and f (x)?
How does the Lipschitz constant compare between g(x) and f (x)?
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Backtracking Line Search

If we step in negative gradient direction, ‖∇f (x)‖ gives us rate of decrease.
at least for infinitesimally small step size.

Find step size that gives at least some fixed fraction of instantaneous rate of decrease.

We’ll discuss backtracking line search, based on this idea, in the Lab.
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Gradient Descent: When to Stop?

Wait until ‖∇f (x)‖2 6 ε, for some ε of your choosing.
(Recall ∇f (x) = 0 at minimum.)

For learning setting,
evalute performance on validation data as you go
stop when not improving, or getting worse
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Gradient Descent for Empirical Risk (And Other Averages)
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Linear Least Squares Regression

Setup

Input space X= Rd

Output space Y= R
Action space Y= R
Loss: `(ŷ ,y) = 1

2 (y − ŷ)2

Hypothesis space: F =
{
f : Rd → R | f (x) = wT x , w ∈ Rd

}
Given data set Dn = {(x1,y1), . . . ,(xn,yn)},

Let’s find the ERM f̂ ∈ F.
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Linear Least Squares Regression

Objective Function: Empirical Risk
The function we want to minimize is the empirical risk:

R̂n(w) =
1
n

n∑
i=1

(
wT xi − yi

)2
,

where w ∈ Rd parameterizes the hypothesis space F.

Now let’s think more generally...
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Gradient Descent for Empirical Risk and Averages

Suppose we have a hypothesis space of functions F =
{
fw : X→A | w ∈ Rd

}
Parameterized by w ∈ Rd .

ERM is to find w minimizing

R̂n(w) =
1
n

n∑
i=1

`(fw (xi ),yi )

Suppose `(fw (xi ),yi ) is differentiable as a function of w .

Then we can do gradient descent on R̂n(w)...
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Gradient Descent: How does it scale with n?

At every iteration, we compute the gradient at current w :

∇R̂n(w) =
1
n

n∑
i=1

∇w `(fw (xi ),yi )

We have to touch all n training points to take a single step. [O(n)]

Will this scale to “big data”?

Can we make progress without looking at all the data?
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“Noisy” Gradient Descent

We know gradient descent works.
But the gradient may be slow to compute.

What if we just use an estimate of the gradient?

Turns out that can work fine.

Intuition:
Gradient descent is an interative procedure anyway.

At every step, we have a chance to recover from previous missteps.
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Minibatch Gradient

The full gradient is

∇R̂n(w) =
1
n

n∑
i=1

∇w `(fw (xi ),yi )

It’s an average over the full batch of data Dn = {(x1,y1), . . . ,(xn,yn)}.

Let’s take a subsample of size N:

(xm1 ,ym1), . . . ,(xmN
,ymN

)

The minibatch gradient is

∇R̂N(w) =
1
N

N∑
i=1

∇w `(fw (xmi ),ymi )

What can we say about the minibatch gradient?
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Minibatch Gradient

What’s the expected value of the minibatch gradient?

E
[
∇R̂N(w)

]
=

1
N

N∑
i=1

E [∇w `(fw (xmi ),ymi )]

= E [∇w `(fw (xm1),ym1)]

=

n∑
i=1

P(m1 = i)∇w `(fw (xi ),yi )

=
1
n

n∑
i=1

∇w `(fw (xi ),yi )

= ∇R̂n(w)

Technical note: We only assumed that each point in the minibatch is equally likely to be
any of the n points in the batch – no independence needed. So still true if we’re sampling
without replacement. Still true if we sample one point randomly and reuse it N times.
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Minibatch Gradient Properties

Minibatch gradient is an unbiased estimator for the [full] batch gradient:

E
[
∇R̂N(w)

]
=∇R̂n(w)

The bigger the minibatch, the better the estimate.
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Minibatch Gradient – In Practice

Tradeoffs of minibatch size:
Bigger N =⇒ Better estimate of gradient, but slower (more data to touch)
Smaller N =⇒Worse estimate of gradient, but can be quite fast

Even N = 1 works, it’s called stochastic gradient descent (SGD).
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Terminology Review

Gradient descent or “batch” gradient descent
Use full data set of size n to determine step direction

Minibatch gradient descent
Use a random subset of size N to determine step direction
Yoshua Bengio says1:

N is typically between 1 and few hundred
N = 32 is a good default value
With N > 10 we get computational speedup (per datum touched)

Stochastic gradient descent
Minibatch with m = 1.
Use a single randomly chosen point to determine step direction.

1See Yoshua Bengio’s “Practical recommendations for gradient-based training of deep architectures”
http://arxiv.org/abs/1206.5533.
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Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size N)

initialize w = 0
repeat

randomly choose N points {(xi ,yi )}
N
i=1 ⊂Dn

w ← w −η
[

1
N

∑N
i=1∇w `(fw (xi ),yi )

]
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Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent
initialize w = 0
repeat

randomly choose training point (xi ,yi ) ∈Dn

w ← w −η ∇w `(fw (xi ),yi )︸ ︷︷ ︸
Grad(Loss on i’th example)
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Step Size

For SGD, fixed step size can work well in practice, but no theorem.
For convergence guarantee, use decreasing step sizes (dampens noise in step direction).
Let ηt be the step size at the t’th step.

Robbins-Monro Conditions
Many classical convergence results depend on the following two conditions:

∞∑
t=1

η2
t <∞ ∞∑

t=1

ηt =∞
As fast as ηt = O

(1
t

)
would satisfy this... but should be faster than O

(
1√
t

)
.

A useful reference for practical techniques: Leon Bottou’s “Tricks”:
http://research.microsoft.com/pubs/192769/tricks-2012.pdf
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