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Hypothesis Spaces

@ We've spoken vaguely about “bigger” and “smaller” hypothesis spaces

@ In practice, convenient to work with a nested sequence of spaces:
F1CHhCFy---CT
Polynomial Functions

o F ={all polynomial functions}

o F4 ={all polynomials of degree < d}
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Complexity Measures for Decision Functions

@ Number of variables / features

@ Depth of a decision tree

@ Degree of polynomial

@ How about for linear decision functions, i.e. x — wixy+ -+ wgyxg?
e {y complexity: number of non-zero coefficients
o {1 “lasso” complexity: Zf{=1|w,-|, for coefficients wy, ..., Wy
o {, “ridge” complexity: ¢, w? for coefficients wy, ..., wy
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Nested Hypothesis Spaces from Complexity Measure

Hypothesis space: F

Complexity measure Q : F — [0, 00)
Consider all functions in & with complexity at most r:

Fr={feF1Q(f)<r}
@ Increasing complexities: r =0,1.2,2.6,5.4,... gives nested spaces:

FoCTF12CFr6CIssC---CTF
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Constrained Empirical Risk Minimization

Constrained ERM (lvanov regularization)

For complexity measure Q) : F — [0, 00) and fixed r >0,

m|n—Z€ X;)
feF n 4 i), i)

s.t.Q(f) <r

@ Choose r using validation data or cross-validation.
@ Each r corresponds to a different hypothesis spaces. Could also write:

mm—ZE X;)
feF, n i), i)
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Penalized Empirical Risk Minimization

Penalized ERM (Tikhonov regularization)
For complexity measure Q : F — [0,00) and fixed A >0,

n

minl Lf(x;), i) +AQ(f)

@ Choose A using validation data or cross-validation.

o (Ridge regression in homework is of this form.)
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lvanov vs Tikhonov Regularization

@ Let L:F — R be any performance measure of f
e e.g. L(f) could be the empirical risk of f

For many L and Q, Ivanov and Tikhonov are “equivalent”.
What does this mean?

o Any solution f* you could get from lvanov, can also get from Tikhonov.
e Any solution f* you could get from Tikhonov, can also get from Ivanov.

In practice, both approaches are effective.

@ Tikhonov convenient because it's unconstrained minimization.

Can get conditions for equivalence from Lagrangian duality theory — details in homework.
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lvanov vs Tikhonov Regularization (Details)

Ivanov and Tikhonov regularization are equivalent if:
@ For any choice of r > 0, any lvanov solution

f*eargminL(f) st. Q(f)<r
fexF

is also a Tikhonov solution for some A > 0. That is, 3A > 0 such that

f* € argmin L(f) +AQ(f).
fex

@ Conversely, for any choice of A > 0, any Tikhonov solution:

fx € argmin L(f) +AQ(f)
feg

is also an Ivanov solution for some r > 0. That is, Ir > 0 such that

fx €argminL(f) s.t. Q(f)<r
feF
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Linear Least Squares Regression

@ Consider linear models

ff:{f:Rd—>R|f(x):WTxfor WeRd}

Loss: £(y,y) = (y—)°
Training data D, = ((x1,¥1),--., (Xn, ¥n))

@ Linear least squares regression is ERM for { over J:
n
~ 1 T 2
W:argmln—Z{W X,'—y,'}
weRd M2y

@ Can overfit when d is large compared to n.

@ e.g.: d> n very common in Natural Language Processing problems (e.g. a 1M features
for 10K documents).
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Ridge Regression: Workhorse of Modern Data Science

Ridge Regression (Tikhonov Form)

The ridge regression solution for regularization parameter A > 0 is

—a:vger;Ln;Z{W Xj— yl} +Awl3,

where || w3 =w?+---+ w3 is the square of the {>-norm.

Ridge Regression (lvanov Form)

The ridge regression solution for complexity parameter r > 0 is

W—argmln—Z{W Xj — y,} .

Iwlig<r? M=
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How does {» regularization induce “regularity”?

For f(x) =wTx,
o f

is Lipschitz continuous with Lipschitz constant ||w/|,.

That is, when moving from x to x+h, f changes no more than ||W||2||Al|.

So {5 regularization controls the maximum rate of change of f.

Proof:

aX)

(x+h)—Ff(x)| = W (x+h)—w"xl=|w"h|
< ||wl|2||h]]2(Cauchy-Schwarz inequality)
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Ridge Regression: Regularization Path

Ridge Regression

n
o | funding w, = argmin— Z (wTCUi - %)2
lell3<r? ™52
W = s = Unconstrained ERM
o 9iel%a
o college
e For r =0, ||w,||2/||@]]2 = 0.
o e For r = oo, ||w,||2/||w]]2 = 1
hs

00 02 04 06 08 1.0
[ |2/ ll0]l2

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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Lasso Regression: Workhorse (2) of Modern Data Science

Lasso Regression (Tikhonov Form)

The lasso regression solution for regularization parameter A >0 is

—argmm—Z{W Xj— y,} +Allwllz,

weRd i=1

where [|w||1 = |wi|+ -+ |wyl| is the £1-norm.

Lasso Regression (lvanov Form)

The lasso regression solution for complexity parameter r > 0 is

—argmln—Z{W Xj — y,

Iwlla<r M52
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Lasso Regression: Regularization Path

Lasso n

. 5 funding W, = argmin e > (wha - u)
e A ; fwlhi<r ™5

W = s = Unconstrained ERM
o S
o i - | college

e For r =0, [[w,[[1/[[w[ = 0.
o e For r = oo, ||w.|1/||w]; =1
! 1 hs

T — — T

00 02 04 06 08 1.0
[, 12/ 1]

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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Ridge vs. Lasso: Regularization Paths

Ridge Regression Lasso
. funding o : funding
o DSlictes o _ ASieisa
o college o college
? ?
hs ‘ hs
T T T T | T T T | — T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0
[dr |2/ |12 [y [|1/| @]l

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
October 5, 2017
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Lasso Gives Feature Sparsity: So What?

Coefficient are 0 = don't need those features. What's the gain?

Time/expense to compute/buy features

Memory to store features (e.g. real-time deployment)

o
o
@ Identifies the important features
o Better prediction? sometimes

o

As a feature-selection step for training a slower non-linear model
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lvanov and Tikhonov Equivalent?

@ For ridge regression and lasso regression (and much more)

e the lvanov and Tikhonov formulations are equivalent
o [Optional homework problem, upcoming.]

o We will use whichever form is most convenient.
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Why does Lasso regression give sparse solutions? J
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Parameter Space

o lllustrate affine prediction functions in parameter space.
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The €1 and € Norm Constraints

@ For visualization, restrict to 2-dimensional input space
o F={f(x) = wixi +waxy} (linear hypothesis space)
@ Represent F by {(Wl, wp) € Rz}.

o {> contour: @ {1 contour:
W12+W22:r lwil+wa| =r

Where are the “sparse” solutions?
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The Famous Picture for 1 Regularization

o fr=argmin,cre 2> 7, (wlx— y,) subject to|wy|+[ws| < r

/

@ Blue region: Area satisfying complexity constraint: |wy|+|wa| < r

o Red lines: contours of R,(w)=3 ", (wTx— y,) .

KPM Fig. 13.3
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The Empirical Risk for Square Loss

@ Denote the empirical risk of f(x) =w"x by
~ 1 5
Rufw) = = Xy 2

where X is the design matrix.

o R, is minimized by w = (XTX)leTy, the OLS solution.

e What does R, look like around w?
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The Empirical Risk for Square Loss

@ By “completing the square”, we can show for any w € RY:

Ry(w) = 1(W—v“v)TxTX(W-vAv)+R>,,(vAv)

3>

o Set of w with R,(w) exceeding R,(W) by ¢ >0 is
{W|/%( ) = c+ Ry (W) { )TXTX(W—V“V):nc},

which is an ellipsoid centered at w.

o We'll derive this in homework.
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The Famous Picture for £, Regularization

o f*=argmin,crzd ;1 (wxi— y,) subject to w? + w3 < r

o Blue region: Area satisfying complexity constraint: w? +w2 < r

o Red lines: contours of R,(w)=3 ", (w'x— y,) .

KPM Fig. 13.3
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Why are Lasso Solutions Often Sparse?

£1-ball =l

el <

@ Suppose design matrix X is orthogonal, so X7 X =/, and contours are circles.

@ Then OLS solution in green or red regions implies {; constrained solution will be at corner

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.6
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https://arxiv.org/abs/1411.3230

The (ﬂq) 7 Constraint

o Generalize to £g : (||w]|¢g)? = lw1|? +[wal?.

e Note: ||wl|q is a norm if g > 1, but not for g € (0,1)
o F={f(x)=wixy +waxo}.

e Contours of ||w|d = |wi|? +|wo|?:

g=4 g=2 g=1 g=0.5
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{q Even Sparser

af?]

1
Z,-ball ol

leellq < pwith g <1

(b) £-ball with g < 1.

@ Suppose design matrix X is orthogonal, so X7 X =/, and contours are circles.

@ Then OLS solution in green or red regions implies £, constrained solution will be at corner

{4-ball constraint is not convex, so more difficult to optimize.

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.9
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The Quora Picture

e From Quora: “Why is L1 regularization supposed to lead to sparsity than L27 [sic]”

(google it)
A L1 regularization
T2
Ho

llellx

B

L2 regularization

el f

2

Ho

N

X1

N

N

@ Does this picture have any interpretation that makes sense? (Aren't those lines supposed

to be ellipses?)
@ Yes... we can revisit.

Figure from https://www.quora.com/Why-is-L1l-regularization-supposed-to-lead-to-sparsity-than-L2.
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How to find the Lasso solution?

@ How to solve the Lasso? .

) 2
min (WTX,'—y,') +A|wl1
weRd 1

o ||w|1 = Iwal+ |wsl is not differentiable!
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Splitting a Number into Positive and Negative Parts

Consider any number a € R.

Let the positive part of a be

Let the negative part of a be
a =-—al(a<0).

Do you see why a*™ >0and a— > 0?

How do you write a in terms of a* and a=7?

How do you write |a| in terms of a* and a=?
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How to find the Lasso solution?

@ The Lasso problem

. 2
min Y (wxi—yi) +Aw|:
weRd £
i=1
o Replace each w; by w;" —w; .
o Write wt = (Wfrwj) and w— = (wf,...,wlj).
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The Lasso as a Quadratic Program

+

We will show: substituting w =w* —w™ and |w|=w™ +w™ gives an equivalent problem:

min i ((W+ — Wf)TXi—y,')Q—H\lT (w+ + W*)

i
wt,w ,
! i=1

subject to W,-Jr >0 for all i w; >0 for all /,

e Objective is differentiable (in fact, convex and quadratic)
@ 2d variables vs d variables and 2d constraints vs no constraints

@ A “quadratic program’: a convex quadratic objective with linear constraints.
e Could plug this into a generic QP solver.
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Possible point of confusion

Equivalent to lasso problem:

n - 5
min Z((WJF—W*) x,-—y,-) +7\1T(W++W7)
subject to w;" >0 for all i w; >0 for all i,

@ When we plug this optimization problem into a QP solver,
e it just sees 2d variables and 2d constraints.
o Doesn't wee that we want WI-+ and w; to be positive and negative parts of w;.

@ Turns out — they will come out that way as a result of the optimization!

@ But to be eliminate confusion, let's start by calling them a; and b; and prove our claim...
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The Lasso as a Quadratic Program

Lasso problem is trivially equivalent to the following:

n

min min Z <(a—b)Tx,~—y;)2+?\1T(a+b)

w  a,b é
i=1
subject to  a; > 0 for all b; >0 for all /,
a—b=w

a+b=|w|

Claim: Don't need constraint a+ b = |w]|.
a’ + a—min(a, b) and b’ <+~ b—min(a, b) at least as good

So if a and b are minimizers, at least one is 0.

Since a— b = w, we must have a=w™' and b=w". So also a+ b =|w]|.
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The Lasso as a Quadratic Program

n

min mm ( -—y;)2+)\1T(a+b)

w
i=1

subject to a; > 0 for all b; >0 for all /,

a—b=w

o Claim: Don't need constraint a— b = w.
e For any a,b >0, there's some w = a—b.

@ So our constraint set has all a,b > 0.
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The Lasso as a Quadratic Program

@ So lasso optimization problem is equivalent to
n - 2
i —b) T x— ,-) AT (a+b
min Zl((a ) xi—yi) +A17 (a+b)

subject to a; >0 for all / b; > 0 for all i,

where at the end we take w* = a* — b* (and we've shown above that a* and b* are
positive and negative parts of w*, respectively.)
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Projected SGD

n

min Z

wt,w—€RI~ i

1

subject to W+ >0 for all i
=0

w; >0 forall /

@ Just like SGD, but after each step

o Project wT and w into the constraint set.

W_)TX,

*y;)2+?\1T (W++W_)

o In other words, if any component of w* or w— becomes negative, set it back to 0.
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Coordinate Descent Method

Goal: Minimize L(w) = L(w,...,wy) over w = (wy,...,wy) € RY.
In gradient descent or SGD,
e each step potentially changes all entries of w.

@ In each step of coordinate descent,
e we adjust only a single w;.

@ In each step, solve
w' W =argminL(wi, ..., w1, W;, Wiy1, ..., Wg)
%
@ Solving this argmin may itself be an iterative process.
@ Coordinate descent is great when

e it's easy or easier to minimize w.r.t. one coordinate at a time
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Coordinate Descent Method

Coordinate Descent Method

Goal: Minimize L(w) = L(w1,...wy) over w = (w1,...,wy) € RY.
o Initialize w(® =0
@ while not converged:

o Choose a coordinate j €{1,...,d}
(t) (t) (t) (t))

new : .

° W, <—argm|n,,|,jL(W1 e W WG W Wy
t+1

° WJ-( R anew and w(ttl) (1)

o t+—t+1

@ Random coordinate choice == stochastic coordinate descent

@ Cyclic coordinate choice = cyclic coordinate descent

In general, we will adjust each coordinate several times.
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Coordinate Descent Method for Lasso

@ Why mention coordinate descent for Lasso?

o In Lasso, the coordinate minimization has a closed form solution!
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Coordinate Descent Method for Lasso

Closed Form Coordinate Minimization for Lasso
Wj—argmlnz w Txi— y,) +Alwly
WJER i=1

Then
(ci+A)/aj ifg<—A
Wwj=140 if ¢ € [—AA]
(ci—A)/aj if¢>A

n

o 2

aJ—2E X7 CJ—2E xijlyi—w’ x,_J)
i=1

where w_; is w without component j and similarly for x; _;.
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Coordinate Descent: When does it work?

@ Suppose we're minimizing f : RY — R.
o Sufficient conditions:

@ f is continuously differentiable and
@ f s strictly convex in each coordinate

@ But lasso objective
n

S (wWTxi—y)* +A|wls

i=1
is not differentiable...

o Luckily there are weaker conditions...
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Coordinate Descent: The Separability Condition

Theorem

aIf the objective f has the following structure

flwy,..., wy) =g(W1,...,Wd)+Zhj(Wj),

where
o g:R? — R is differentiable and convex, and

@ each hj:R— R is convex (but not necessarily differentiable)

then the coordinate descent algorithm converges to the global minimum.

aTseng 1988: “Coordinate ascent for maximizing nondifferentiable concave functions”, Technical
Report LIDS-P
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Coordinate Descent Method — Variation

@ Suppose there's no closed form? (e.g. logistic regression)

@ Do we really need to fully solve each inner minimization problem?
@ A single projected gradient step is enough for {; regularization!
o Shalev-Shwartz & Tewari's “Stochastic Methods..." (2011)

~ David 5. Rosenberg (Bloomberg ML EDU) Gasbor B Sy



Stochastic Coordinate Descent for Lasso — Variation

o Let w=(wt,w)eR? and

L(w) :i ((W+—W_)Txi—y,->2+7\(w++w_)

i=1

Stochastic Coordinate Descent for Lasso - Variation
Goal: Minimize L(W) s.t. W’-+,Wi_ >0 for all /.

o Initialize w(®) =0
o while not converged:

o Randomly choose a coordinate j €{1,..., 2d}
o W+ Wj+max{—w;,—V;L(W%)}
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