Lasso, Ridge, and Elastic Net

David S. Rosenberg

Bloomberg ML EDU
October 5, 2017

Linearly Dependent Features - Algebraic View

A Very Simple Model

- Suppose we have one feature $x_{1} \in \mathbf{R}$.
- Response variable $y \in \mathbf{R}$.
- Got some data and ran least squares linear regression.
- The ERM is

$$
\hat{f}\left(x_{1}\right)=4 x_{1} .
$$

- What happens if we get a new feature x_{2},
- but we always have $x_{2}=x_{1}$?

Duplicate Features

- New feature x_{2} gives no new information.
- ERM is still

$$
\hat{f}\left(x_{1}, x_{2}\right)=4 x_{1} .
$$

- Now there are some more ERMs:

$$
\begin{aligned}
& \hat{f}\left(x_{1}, x_{2}\right)=2 x_{1}+2 x_{2} \\
& \hat{f}\left(x_{1}, x_{2}\right)=x_{1}+3 x_{2} \\
& \hat{f}\left(x_{1}, x_{2}\right)=4 x_{2}
\end{aligned}
$$

- What if we introduce ℓ_{1} or ℓ_{2} regularization?

Duplicate Features: ℓ_{1} and ℓ_{2} norms

- $\hat{f}\left(x_{1}, x_{2}\right)=w_{1} x_{1}+w_{2} x_{2}$ is an ERM iff $w_{1}+w_{2}=4$.
- Consider the ℓ_{1} and ℓ_{2} norms of various solutions:

w_{1}	w_{2}	$\\|w\\|_{1}$	$\\|w\\|_{2}^{2}$
4	0	4	16
2	2	4	$\mathbf{8}$
1	3	4	10
-1	5	6	26

- $\|w\|_{1}$ doesn't discriminate, as long as all have same sign
- $\|w\|_{2}^{2}$ minimized when weight is spread equally
- Picture proof: Level sets of loss are lines of the form $w_{1}+w_{2}=c \ldots$

Linearly Dependent Features - Geometric View

Suppose We Have 2 Equal Features

- Input features: $x_{1}, x_{2} \in \mathbf{R}$.
- Outcome: $y \in \mathbf{R}$.
- Linear prediction functions $f(x)=w_{1} x_{2}+w_{2} x_{2}$
- Suppose $x_{1}=x_{2}$.
- Then all functions with $w_{1}+w_{2}=k$ are the same.
- give same predictions and have same empirical risk

What function will we select if we do ERM with ℓ_{1} or ℓ_{2} constraint?

Equal Features, ℓ_{2} Constraint

- Suppose the line $w_{1}+w_{2}=2 \sqrt{2}+3.5$ corresponds to the empirical risk minimizers.
- Empirical risk increase as we move away from these parameter settings
- Intersection of $w_{1}+w_{2}=2 \sqrt{2}$ and the norm ball $\|w\|_{2} \leqslant 2$ is ridge solution.
- Note that $w_{1}=w_{2}$ at the solution

Equal Features, ℓ_{1} Constraint

- Suppose the line $w_{1}+w_{2}=5.5$ corresponds to the empirical risk minimizers.
- Intersection of $w_{1}+w_{2}=2$ and the norm ball $\|w\|_{1} \leqslant 2$ is lasso solution.
- Note that the solution set is $\left\{\left(w_{1}, w_{2}\right): w_{1}+w_{2}=2, w_{1}, w_{2} \geqslant 0\right\}$.

Linearly Related Features

- Same setup, now suppose $x_{2}=2 x_{1}$.
- Then all functions with $w_{1}+2 w_{2}=k$ are the same.
- give same predictions and have same empirical risk

What function will we select if we do ERM with ℓ_{1} or ℓ_{2} constraint?

Linearly Related Features, ℓ_{2} Constraint

- $w_{1}+2 w_{2}=10 / \sqrt{5}+7$ corresponds to the empirical risk minimizers.
- Intersection of $w_{1}+2 w_{2}=10 \sqrt{5}$ and the norm ball $\|w\|_{2} \leqslant 2$ is ridge solution.
- At solution, $w_{2}=2 w_{1}$.

Linearly Related Features, ℓ_{1} Constraint

- Intersection of $w_{1}+2 w_{2}=4$ and the norm ball $\|w\|_{1} \leqslant 2$ is lasso solution.
- Solution is now a corner of the ℓ_{1} ball, corresonding to a sparse solution.

Linearly Dependent Features: Take Away

- For identical features
- ℓ_{1} regularization spreads weight arbitrarily (all weights same sign)
- ℓ_{2} regularization spreads weight evenly
- Linearly related features
- ℓ_{1} regularization chooses variable with larger scale, 0 weight to others
- ℓ_{2} prefers variables with larger scale - spreads weight proportional to scale

Empirical Risk for Square Loss and Linear Predictors

- Recall our discussion of linear predictors $f(x)=w^{T} x$ and square loss.
- Sets of w giving same empirical risk (i.e. level sets) formed ellipsoids around the ERM.

- With x_{1} and x_{2} linearly related, we get a degenerate ellipse.
- That's why level sets were lines (actually pairs of lines, one on each side of ERM).

KPM Fig. 13.3

Correlated Features - Same Scale

- Suppose x_{1} and x_{2} are highly correlated and the same scale.
- This is quite typical in real data, after normalizing data.
- Nothing degenerate here, so level sets are ellipsoids.
- But, the higher the correlation, the closer to degenerate we get.
- That is, ellipsoids keep stretching out, getting closer to two parallel lines.

Correlated Features, ℓ_{1} Regularization

- Intersection could be anywhere on the top right edge.
- Minor perturbations (in data) can drastically change intersection point - very unstable solution.
- Makes division of weight among highly correlated features (of same scale) seem arbitrary.
- If $x_{1} \approx 2 x_{2}$, ellipse changes orientation and we probably hit a corner.

Correlated Features and the Grouping Issue

Example with highly correlated features

- Model in words:
- y is a linear combination of z_{1} and z_{2}
- But we don't observe z_{1} and z_{2} directly.
- We get 3 noisy observations of z_{1}.
- We get 3 noisy observations of z_{2}.
- We want to predict y from our noisy observations.

Example from Section 4.2 in Hastie et al's Statistical Learning with Sparsity.

Example with highly correlated features

- Suppose (x, y) generated as follows:

$$
\begin{aligned}
z_{1}, z_{2} & \sim \mathcal{N}(0,1) \text { (independent) } \\
\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{6} & \sim \mathcal{N}(0,1) \text { (independent) } \\
y & =3 z_{1}-1.5 z_{2}+2 \varepsilon_{0} \\
x_{j} & = \begin{cases}z_{1}+\varepsilon_{j} / 5 & \text { for } j=1,2,3 \\
z_{2}+\varepsilon_{j} / 5 & \text { for } j=4,5,6\end{cases}
\end{aligned}
$$

- Generated a sample of (x, y) pairs of size 100.
- Correlations within the groups of x 's were around 0.97 .

Example with highly correlated features

- Lasso regularization paths:

- Lines with the same color correspond to features with essentially the same information
- Distribution of weight among them seems almost arbitrary

Hedge Bets When Variables Highly Correlated

- When variables are highly correlated (and same scale, after normalization),
- we want to give them roughly the same weight.
- Why?
- Let their errors cancel out
- How can we get the weight spread more evenly?

Elastic Net

- The elastic net combines lasso and ridge penalties:

$$
\hat{w}=\underset{w \in \mathbf{R}^{d}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left\{w^{\top} x_{i}-y_{i}\right\}^{2}+\lambda_{1}\|w\|_{1}+\lambda_{2}\|w\|_{2}^{2}
$$

- We expect correlated random variables to have similar coefficients.

Highly Correlated Features, Elastic Net Constraint

- Elastic net solution is closer to $w_{2}=w_{1}$ line, despite high correlation.

Elastic Net - "Sparse Regions"

- Suppose design matrix X is orthogonal, so $X^{\top} X=I$, and contours are circles (and features uncorrelated)
- Then OLS solution in green or red regions implies elastic-net constrained solution will be at corner

Fig from Mairal et al.'s Sparse Modeling for Image and Vision Processing Fig 1.9

Elastic Net Results on Model

- Lasso on left; Elastic net on right.
- Ratio of ℓ_{2} to ℓ_{1} regularization roughly $2: 1$.

Elastic Net - A Theorem for Correlated Variables

Theorem
${ }^{\text {a }}$ Let $\rho_{i j}=\widehat{\operatorname{corr}}\left(x_{i}, x_{j}\right)$. Suppose \hat{w}_{i} and \hat{w}_{j} are selected by elastic net, with y centered and predictors x_{1}, \ldots, x_{d} standardized. If $\hat{w}_{i} \hat{w}_{j}>0$, then

$$
\left|\hat{w}_{i}-\hat{w}_{j}\right| \leqslant \frac{\|y\| \sqrt{2}}{\lambda_{2}} \sqrt{1-\rho_{i j}} .
$$

[^0]
Extra Pictures

Elastic Net vs Lasso Norm Ball

$\ell_{1.2}$ vs Elastic Net

FIGURE 3.13. Contours of constant value of $\sum_{j}\left|\beta_{j}\right|^{q}$ for $q=1.2$ (left plot), and the elastic-net penalty $\sum_{j}\left(\alpha \beta_{j}^{2}+(1-\alpha)\left|\beta_{j}\right|\right)$ for $\alpha=0.2$ (right plot). Although visually very similar, the elastic-net has sharp (non-differentiable) corners, while the $q=1.2$ penalty does not.

[^0]: a Theorem 1 in "Regularization and variable selection via the elastic net": https://web.stanford.edu/~hastie/Papers/B67.2\%20(2005)\%20301320\%20Zou\%20\&\%20Hastie.pdf

