Loss Functions for Regression and Classification

David S. Rosenberg

Bloomberg ML EDU

October 11, 2017

Contents

Regression Loss Functions

- Regression spaces:
 - Input space $\mathcal{X} = \mathbf{R}^d$
 - Action space $\mathcal{A}=\mathbf{R}$
 - Outcome space $\mathcal{Y} = \mathbf{R}$.
- Since $\mathcal{A} = \mathcal{Y}$, we can use more traditional notation:
 - \hat{y} is the predicted value (the action)
 - y is the actual observed value (the outcome)

Loss Functions for Regression

• In general, loss function may take the form

 $(\hat{y}, y) \mapsto \ell(\hat{y}, y) \in \mathbf{R}$

- Regression losses usually only depend on the **residual** $r = y \hat{y}$.
 - what you have to add to your prediction to get the right answer
- Loss $\ell(\hat{y}, y)$ is called **distance-based** if it
 - Only depends on the residual:

$$\ell(\hat{y}, y) = \psi(y - \hat{y})$$
 for some $\psi: \mathbf{R} \to \mathbf{R}$

2 loss is zero when residual is 0:

 $\psi(0) = 0$

Distance-Based Losses are Translation Invariant

• Distance-based losses are translation-invariant. That is,

$$\ell(\hat{y}+a,y+a) = \ell(\hat{y},y).$$

- When might you not want to use a translation-invariant loss?
- Sometimes relative error $\frac{\hat{y}-y}{y}$ is a more natural loss (but not translation-invariant)
- Often you can transform response y so it's translation-invariant (e.g. log transform)

Some Losses for Regression

- Residual: $r = y \hat{y}$
- Square or ℓ_2 Loss: $\ell(r) = r^2$
- Absolute or Laplace or ℓ_1 Loss: $\ell(r) = |r|$

y	ŷ	$ r = y - \hat{y} $	$r^2 = (y - \hat{y})^2$
1	0	1	1
5	0	5	25
10	0	10	100
50	0	50	2500

- Outliers typically have large residuals.
- Square loss much more affected by outliers than absolute loss.

Loss Function Robustness

• Robustness refers to how affected a learning algorithm is by outliers.

KPM Figure 7.6

Some Losses for Regression

- Square or ℓ_2 Loss: $\ell(r) = r^2$ (not robust)
- Absolute or Laplace Loss: $\ell(r) = |r|$ (not differentiable)
 - gives median regression
- Huber Loss: Quadratic for $|r| \leq \delta$ and linear for $|r| > \delta$ (robust and differentiable)

• x-axis is the residual $y - \hat{y}$.

Classification Loss Functions

The Classification Problem

- Outcome space $\mathcal{Y} = \{-1, 1\}$
- Action space $\mathcal{A} = \{-1, 1\}$
- 0-1 loss for $f : \mathcal{X} \to \{-1, 1\}$:

$$\ell(f(x), y) = 1(f(x) \neq y)$$

• But let's allow real-valued predictions $f : \mathcal{X} \to \mathbf{R}$:

$$f(x) > 0 \implies \text{Predict } 1$$

 $f(x) < 0 \implies \text{Predict } -1$

The Score Function

- Action space $\mathcal{A} = \mathbf{R}$ Output space $\mathcal{Y} = \{-1, 1\}$
- Real-valued prediction function $f: \mathfrak{X} \to \mathbf{R}$

Definition

The value f(x) is called the **score** for the input x.

- In this context, f may be called a score function.
- Intuitively, magnitude of the score represents the confidence of our prediction.

Definition

The margin (or functional margin) for predicted score \hat{y} and true class $y \in \{-1, 1\}$ is $y\hat{y}$.

- The margin often looks like yf(x), where f(x) is our score function.
- The margin is a measure of how **correct** we are.
 - If y and \hat{y} are the same sign, prediction is **correct** and margin is **positive**.
 - If y and \hat{y} have different sign, prediction is **incorrect** and margin is **negative**.
- We want to maximize the margin.

- Most classification losses depend only on the margin.
- Such a loss is called a margin-based loss.
- There is a related concept, the geometric margin, in the notes on hard-margin SVM.)

Classification Losses: 0-1 Loss

• Empirical risk for 0-1 loss:

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(y_i f(x_i) \leq 0)$$

Minimizing empirical 0-1 risk not computationally feasible

 $\hat{R}_n(f)$ is non-convex, not differentiable (in fact, discontinuous!). Optimization is **NP-Hard**.

Classification Losses

Zero-One loss: $\ell_{0-1} = 1 (m \leq 0)$

• x-axis is margin: $m > 0 \iff$ correct classification

Classification Losses

SVM/Hinge loss: $\ell_{\text{Hinge}} = \max\{1-m, 0\} = (1-m)_+$

Hinge is a convex, upper bound on 0-1 loss. Not differentiable at m = 1. We have a "margin error" when m < 1.

(Soft Margin) Linear Support Vector Machine

- Hypothesis space $\mathcal{F} = \{f(x) = w^T x \mid w \in \mathbb{R}^d\}.$
- Loss $\ell(m) = (1-m)_+$
- $\bullet \ \ell_2$ regularization

$$\min_{w \in \mathbf{R}^{d}} \sum_{i=1}^{n} (1 - y_{i} f_{w}(x_{i}))_{+} + \lambda \|w\|_{2}^{2}$$

Classification Losses

Logistic/Log loss: $\ell_{\text{Logistic}} = \log(1 + e^{-m})$

Logistic loss is differentiable. Logistic loss always wants more margin (loss never 0).

David S. Rosenberg (Bloomberg ML EDU)

October 11, 2017 19 / 21

What About Square Loss for Classification?

- Action space $\mathcal{A} = \mathbf{R}$ Output space $\mathcal{Y} = \{-1, 1\}$
- Loss $\ell(f(x), y) = (f(x) y)^2$.
- Turns out, can write this in terms of margin m = f(x)y:

$$\ell(f(x), y) = (f(x) - y)^2 = (1 - f(x)y)^2 = (1 - m)^2$$

• Prove using fact that $y^2 = 1$, since $y \in \{-1, 1\}$.

What About Square Loss for Classification?

Heavily penalizes outliers (e.g. mislabeled examples). <u>May have higher sample complexity</u> (i.e. needs more data) than hinge & logistic¹.

1Rosasco et al's "Are Loss Functions All the Same?" http://web.mit.edu/lrosasco/www/publications/loss.pdf

David S. Rosenberg (Bloomberg ML EDU)

October 11, 2017 21 / 21