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Why Convex Optimization?

@ Historically:

o Linear programs (linear objectives & constraints) were the focus
o Nonlinear programs: some easy, some hard

@ By early 2000s:

e Main distinction is between convex and non-convex problems

o Convex problems are the ones we know how to solve efficiently

o Mostly batch methods until... around 20107 (earlier if you were into neural nets)
@ By 2010 +- few years, most people understood the

e optimization / estimation / approximation error tradeoffs
o accepted that stochatic methods were often faster to get good results

o (especially on big data sets)

@ These days, nobody’'s scared of non-convex problems - SGD seems to work well enough on
problems of interest (i.e. neural networks).
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Your Reference for Convex Optimization

@ Boyd and Vandenberghe (2004)

o Very clearly written, but has a ton of detail for a first pass.
e See the Extreme Abridgement of Boyd and Vandenberghe.

Stephen Boyd and
Lieven Vandenberghe

convex
Optimization

October 11, 2017
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https://davidrosenberg.github.io/mlcourse/Notes/convex-optimization.pdf

Notation from Boyd and Vandenberghe

@ f:RP — RY to mean that f maps from some subset of RP
e namely dom f C RP, where dom f is the domain of f
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Convex Sets

Definition
A set C is convex if for any x1,x> € C and any 0 with 0 <0 <1 we have

Ox1+(1—0)x € C.

KPM Fig. 7.4
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Convex and Concave Functions

Definition
A function f:R” — R is convex if dom f is a convex set and if for all x,y € dom f, and
0<0 <1, we have

f(Ox+(1—0)y) <Of(x)+(1—0)f(y).

KPM Fig. 7.5
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Examples of Convex Functions on R

Examples

@ x> ax+ b is both convex and concave on R for all a,b € R.
x > |x|P for p > 1 is convex on R
x > e® is convex on R for all a€ R

Every norm on R" is convex (e.g. ||x|/1 and ||x]|2)

Max: (x1,...,%n) — max{xy...,x,} is convex on R"
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Convex Functions and Optimization

Definition

A function f is strictly convex if the line segment connecting any two points on the graph of f
lies strictly above the graph (excluding the endpoints).

Consequences for optimization:
e convex: if there is a local minimum, then it is a global minimum

e strictly convex: if there is a local minimum, then it is the unique global minumum
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General Optimization Problem: Standard Form

General Optimization Problem: Standard Form

minimize fo(x)
subject to fi(x)<0, i=1,....m

where x € R" are the optimization variables and fj is the objective function.

Assume domain D =" ,dom f;N(\?_, dom h; is nonempty.
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General Optimization Problem: More Terminology

The set of points satisfying the constraints is called the feasible set.

A point x in the feasible set is called a feasible point.
If x is feasible and f;(x) =0,

e then we say the inequality constraint f;(x) < 0 is active at x.

The optimal value p* of the problem is defined as

p" =inf{fy(x) | x satisfies all constraints}.

@ x* is an optimal point (or a solution to the problem) if x* is feasible and f(x*) = p*.
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Do We Need Equality Constraints?

@ Note that
h(x)=0 <= (h(x) >0 AND h(x) <0)

o Consider an equality-constrained problem:
minimize fo(x)
subject to h(x)=0
e Can be rewritten as

minimize fo(x)
subject to h(x) <0
—h(x) 0.

@ For simplicity, we'll drop equality contraints from this presentation.
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The Lagrangian

The general [inequality-constrained] optimization problem is:

minimize fo(x)

subject to fi(x)<0, i=1,....m

Definition

The Lagrangian for this optimization problem is

@ A;'s are called Lagrange multipliers (also called the dual variables).
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The Lagrangian Encodes the Objective and Constraints

@ Supremum over Lagrangian gives back encoding of objective and constraints:

supL(x,A) = sup (fb(XHZ?\fﬁ(X))
i=1

A=0 A=0
_Jfolx) when fi(x) <Oall i
I otherwise.

o Equivalent primal form of optimization problem:

p" =infsup L(x,A)
X A-0
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The Primal and the Dual

@ Original optimization problem in primal form:

p* =infsup L(x,A)
X A=0

e Get the Lagrangian dual problem by “swapping the inf and the sup:

d* =supinfL(x,A)
A0 X

e We will show weak duality: p* > d* for any optimization problem.
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Weak Max-Min Inequality

Theorem
For any f: W x Z — R, we have

sup inf f(w,z) < inf supf(w,z).
sup inf, (w,2z) Anf, sup (w,z)

Proof: For any wg € W and zy € Z, we clearly have

inf f(w,z) < f(wp,2z0) < supf(wp,z).
wew zeZ

Since infyew f(w, z9) <sup,czf(wo,z) for all wy and zg, we must also have

sup inf f(w,z) < inf supf(wy,z).
ZOGZWEW WOEWZ€Z

~ David 5. Rosenberg (Bloomberg ML EDU) October 11, 2017 19/30



Weak Duality

e For any optimization problem (not just convex), weak max-min inequality implies weak

duality:
p* —|nfsup fo(x Aifi(x
s |60+
> sup inf |[fi(x)+ ) Aifi(x
A=0,v X Z

@ The difference p* —d* is called the duality gap.

e For convex problems, we often have strong duality: p* = d*.
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The Lagrange Dual Function
@ The Lagrangian dual problem:
d* =supinfL(x,A)

A=0 X

Definition

The Lagrange dual function (or just dual function) is

g(\) =infL(x,\) = inf <f0(x) —l—Z?\;f;(x)) .
i=1

@ The dual function may take on the value —oco (e.g. fy(x) = x).
@ The dual function is always concave
e since pointwise min of affine functions
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The Lagrange Dual Problem: Search for Best Lower Bound

@ In terms of Lagrange dual function, we can write weak duality as

*

p* > supg(A)=d
A0

@ So for any A with A >0, Lagrange dual function gives a lower bound on optimal
solution:
p* > g(A) forall A >0
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The Lagrange Dual Problem: Search for Best Lower Bound

@ The Lagrange dual problem is a search for best lower bound on p*:
maximize  g(A)
subject to A= 0.
o A dual feasible if A =0 and g(A) > —oo.

o A* dual optimal or optimal Lagrange multipliers if they are optimal for the Lagrange dual
problem.

@ Lagrange dual problem often easier to solve (simpler constraints).

@ d* can be used as stopping criterion for primal optimization.

@ Dual can reveal hidden structure in the solution.

October 11, 2017 23 /30



Convex Optimization J

October 11, 2017 24 /30



Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize fo(x)

subject to fi(x)<0, i=1,...

where fy, ..., f,, are convex functions.

,ym
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Strong Duality for Convex Problems

@ For a convex optimization problems, we usually have strong duality, but not always.
o e.g. Convex problem without strong duality:

minimize e~
subject to x?/y <0
y>0

@ The additional conditions needed are called constraint qualifications.

Example from Laurent El Ghaoui's EE 227A: Lecture 8 Notes, Feb 9, 2012
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Slater's Constraint Qualifications for Strong Duality

e Sufficient conditions for strong duality in a convex problem.
@ Roughly: the problem must be strictly feasible.
e Qualifications when problem domain! D C R” is an open set:

o Strict feasibility is sufficient. (3x fi(x) <0 fori=1,..., m)
o For any affine inequality constraints, f;(x) <0 is sufficient.

@ If D not open, see notes or BV Section 5.2.3, p. 226.

1D is the set where all functions are defined, NOT the feasible set.
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Complementary Slackness

e Consider a general optimization problem (i.e. not necessarily convex).
o If we have strong duality, we get an interesting relationship between

o the optimal Lagrange multiplier A7 and
o the ith constraint at the optimum: f;(x*)

@ Relationship is called “complementary slackness':
N F(x*) =0

@ Always have Lagrange multiplier is zero or constraint is active at optimum or both.
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Complementary Slackness “Sandwich Proof”

@ Assume strong duality: p* = d* in a general optimization problem
@ Let x* be primal optimal and A* be dual optimal. Then:

fo(x*) = g(A*)=inf L(x,A\*) (strong duality and definition)

< L(x*,A%)
m
= fo(x*)+ AFfi(x*
o(x™) ; (x™)
<0
< folx¥).

Each term in sum ) ;_; A'fi(x*) must actually be 0. That is

A fi(x*)=0, i=1,...,m|

This condition is known as complementary slackness.
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