Lagrangian Duality and Convex Optimization

David S. Rosenberg

Bloomberg ML EDU

October 11, 2017
Introduction
Why Convex Optimization?

- Historically:
 - **Linear programs** (linear objectives & constraints) were the focus
 - **Nonlinear programs**: some easy, some hard

- By early 2000s:
 - Main distinction is between **convex** and **non-convex** problems
 - Convex problems are the ones we know how to solve efficiently
 - Mostly batch methods until... around 2010? (earlier if you were into neural nets)

- By 2010 +- few years, most people understood the
 - optimization / estimation / approximation error tradeoffs
 - accepted that **stochastic methods** were often faster to get good results
 - (especially on big data sets)

- These days, nobody’s scared of non-convex problems - SGD seems to work well enough on problems of interest (i.e. neural networks).
Boyd and Vandenberghe (2004)

- Very clearly written, but has a ton of detail for a first pass.
- See the Extreme Abridgement of Boyd and Vandenberghe.
Notation from Boyd and Vandenberghe

- $f : \mathbb{R}^p \to \mathbb{R}^q$ to mean that f maps from some subset of \mathbb{R}^p
 - namely $\text{dom } f \subset \mathbb{R}^p$, where $\text{dom } f$ is the domain of f
Convex Sets and Functions
Convex Sets

Definition

A set C is **convex** if for any $x_1, x_2 \in C$ and any θ with $0 \leq \theta \leq 1$ we have

$$\theta x_1 + (1 - \theta) x_2 \in C.$$
Convex and Concave Functions

Definition
A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if $\text{dom } f$ is a convex set and if for all $x, y \in \text{dom } f$, and $0 \leq \theta \leq 1$, we have

$$f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y).$$
Examples of Convex Functions on \mathbb{R}

Examples

- $x \mapsto ax + b$ is both convex and concave on \mathbb{R} for all $a, b \in \mathbb{R}$.
- $x \mapsto |x|^p$ for $p \geq 1$ is convex on \mathbb{R}
- $x \mapsto e^{ax}$ is convex on \mathbb{R} for all $a \in \mathbb{R}$
- Every norm on \mathbb{R}^n is convex (e.g. $\|x\|_1$ and $\|x\|_2$)
- Max: $(x_1, \ldots, x_n) \mapsto \max\{x_1, \ldots, x_n\}$ is convex on \mathbb{R}^n
Definition

A function f is strictly convex if the line segment connecting any two points on the graph of f lies strictly above the graph (excluding the endpoints).

Consequences for optimization:

- **convex**: if there is a local minimum, then it is a global minimum
- **strictly convex**: if there is a local minimum, then it is the unique global minimum
The General Optimization Problem
General Optimization Problem: Standard Form

minimize \(f_0(x) \)

subject to \(f_i(x) \leq 0, \ i = 1, \ldots, m \)

\(h_i(x) = 0, \ i = 1, \ldots p, \)

where \(x \in \mathbb{R}^n \) are the optimization variables and \(f_0 \) is the objective function.

Assume domain \(D = \bigcap_{i=0}^{m} \text{dom } f_i \cap \bigcap_{i=1}^{p} \text{dom } h_i \) is nonempty.
The set of points satisfying the constraints is called the **feasible set**.

A point \(x \) in the feasible set is called a **feasible point**.

If \(x \) is feasible and \(f_i(x) = 0 \),

- then we say the inequality constraint \(f_i(x) \leq 0 \) is **active** at \(x \).

The **optimal value** \(p^* \) of the problem is defined as

\[
p^* = \inf \{ f_0(x) | x \text{ satisfies all constraints} \}.
\]

\(x^* \) is an **optimal point** (or a solution to the problem) if \(x^* \) is feasible and \(f(x^*) = p^* \).
Do We Need Equality Constraints?

- Note that
 \[h(x) = 0 \iff (h(x) \geq 0 \text{ AND } h(x) \leq 0) \]

- Consider an equality-constrained problem:
 \[
 \begin{align*}
 \text{minimize} & \quad f_0(x) \\
 \text{subject to} & \quad h(x) = 0
 \end{align*}
 \]

- Can be rewritten as
 \[
 \begin{align*}
 \text{minimize} & \quad f_0(x) \\
 \text{subject to} & \quad h(x) \leq 0 \\
 & \quad -h(x) \leq 0.
 \end{align*}
 \]

- For simplicity, we’ll drop equality constraints from this presentation.
Lagrangian Duality: Convexity not required
The Lagrangian

The general [inequality-constrained] optimization problem is:

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

Definition

The **Lagrangian** for this optimization problem is

\[
L(x, \lambda) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x).
\]

\(\lambda_i\)'s are called **Lagrange multipliers** (also called the **dual variables**).
Supremum over Lagrangian gives back encoding of objective and constraints:

\[
\sup_{\lambda \geq 0} L(x, \lambda) = \sup_{\lambda \geq 0} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right) = \begin{cases}
 f_0(x) & \text{when } f_i(x) \leq 0 \text{ all } i \\
 \infty & \text{otherwise}.
\end{cases}
\]

Equivalent \textbf{primal form} of optimization problem:

\[
p^* = \inf_{x} \sup_{\lambda \geq 0} L(x, \lambda)
\]
The Primal and the Dual

- Original optimization problem in **primal form**:
 \[p^* = \inf_x \sup_{\lambda \succeq 0} L(x, \lambda) \]

- Get the **Lagrangian dual problem** by “swapping the inf and the sup”:
 \[d^* = \sup_{\lambda \succeq 0} \inf_x L(x, \lambda) \]

- We will show **weak duality**: \(p^* \geq d^* \) for any optimization problem.
Weak Max-Min Inequality

Theorem

For any \(f : W \times Z \to \mathbb{R} \), we have

\[
\sup_{z \in Z} \inf_{w \in W} f(w, z) \leq \inf_{w \in W} \sup_{z \in Z} f(w, z).
\]

Proof: For any \(w_0 \in W \) and \(z_0 \in Z \), we clearly have

\[
\inf_{w \in W} f(w, z_0) \leq f(w_0, z_0) \leq \sup_{z \in Z} f(w_0, z).
\]

Since \(\inf_{w \in W} f(w, z_0) \leq \sup_{z \in Z} f(w_0, z) \) for all \(w_0 \) and \(z_0 \), we must also have

\[
\sup_{z_0 \in Z} \inf_{w \in W} f(w, z_0) \leq \inf_{w_0 \in W} \sup_{z \in Z} f(w_0, z).
\]
Weak Duality

- For any optimization problem \(\textbf{not just convex} \), weak max-min inequality implies weak duality:

\[
p^* = \inf_x \sup_{\lambda \succeq 0} \left[f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right]
\geq \sup_{\lambda \succeq 0} \inf_x \left[f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right] = d^*
\]

- The difference \(p^* - d^* \) is called the \textbf{duality gap}.

- For \textit{convex} problems, we often have \textbf{strong duality}: \(p^* = d^* \).
The Lagrange Dual Function

- The Lagrangian dual problem:

\[d^* = \sup_{\lambda \succeq 0} \inf_x L(x, \lambda) \]

Definition

The **Lagrange dual function** (or just **dual function**) is

\[g(\lambda) = \inf_x L(x, \lambda) = \inf_x \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right). \]

- The dual function may take on the value \(-\infty\) (e.g. \(f_0(x) = x \)).
- The dual function is always **concave**
 - since pointwise min of affine functions
In terms of Lagrange dual function, we can write weak duality as

\[p^* \geq \sup_{\lambda \geq 0} g(\lambda) = d^* \]

So for any \(\lambda \) with \(\lambda \geq 0 \), Lagrange dual function gives a lower bound on optimal solution:

\[p^* \geq g(\lambda) \text{ for all } \lambda \geq 0 \]
The Lagrange dual problem is a search for best lower bound on p^*:

\[
\begin{align*}
\text{maximize} & \quad g(\lambda) \\
\text{subject to} & \quad \lambda \succeq 0.
\end{align*}
\]

- λ dual feasible if $\lambda \succeq 0$ and $g(\lambda) > -\infty$.
- λ^* dual optimal or optimal Lagrange multipliers if they are optimal for the Lagrange dual problem.

Lagrange dual problem often easier to solve (simpler constraints).

- d^* can be used as stopping criterion for primal optimization.
- Dual can reveal hidden structure in the solution.
Convex Optimization
Convex Optimization Problem: Standard Form

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

where \(f_0, \ldots, f_m \) are convex functions.
For a convex optimization problems, we usually have strong duality, but not always.

- e.g. Convex problem without strong duality:

 minimize \(e^{-x} \)
 subject to \(x^2/y \leq 0 \)
 \(y > 0 \)

- The additional conditions needed are called **constraint qualifications**.
Sufficient conditions for strong duality in a **convex** problem.

Roughly: the problem must be **strictly** feasible.

Qualifications when problem domain\(^1\) \(\mathcal{D} \subset \mathbb{R}^n\) is an open set:

- **Strict feasibility is sufficient.** \((\exists x \ f_i(x) < 0 \text{ for } i = 1, \ldots, m)\)
- For any affine inequality constraints, \(f_i(x) \leq 0\) is sufficient.

If \(\mathcal{D}\) not open, see notes or BV Section 5.2.3, p. 226.

\(^1\)\(\mathcal{D}\) is the set where all functions are defined, NOT the feasible set.
Complementary Slackness
Consider a general optimization problem (i.e. not necessarily convex).

If we have strong duality, we get an interesting relationship between
- the optimal Lagrange multiplier λ^*_i and
- the ith constraint at the optimum: $f_i(x^*)$

Relationship is called “complementary slackness”:

$$\lambda^*_i f_i(x^*) = 0$$

Always have Lagrange multiplier is zero or constraint is active at optimum or both.
Complementary Slackness “Sandwich Proof”

- Assume strong duality: $p^* = d^*$ in a general optimization problem
- Let x^* be primal optimal and λ^* be dual optimal. Then:

$$
\begin{align*}
 f_0(x^*) &= g(\lambda^*) = \inf_x L(x, \lambda^*) \quad \text{(strong duality and definition)} \\
 &\leq L(x^*, \lambda^*) \\
 &= f_0(x^*) + \sum_{i=1}^{m} \lambda_i^* f_i(x^*) \\
 &\leq f_0(x^*).
\end{align*}
$$

Each term in sum $\sum_{i=1}^{m} \lambda_i^* f_i(x^*)$ must actually be 0. That is

$$
\lambda_i^* f_i(x^*) = 0, \quad i = 1, \ldots, m.
$$

This condition is known as **complementary slackness**.