Support Vector Machines

David S. Rosenberg
Bloomberg ML EDU

October 11, 2017

The SVM as a Quadratic Program

Definition

The margin (or functional margin) for predicted score \hat{y} and true class $y \in\{-1,1\}$ is $y \hat{y}$.

- The margin often looks like $y f(x)$, where $f(x)$ is our score function.
- The margin is a measure of how correct we are.
- We want to maximize the margin.
- Most classification losses depend only on the margin.
(This is distinct from but related to geometric margin.)

Hinge Loss

- SVM/Hinge loss: $\ell_{\text {Hinge }}=\max \{1-m, 0\}=(1-m)_{+}$
- Margin $m=y f(x)$; "Positive part" $(x)_{+}=x 1(x \geqslant 0)$.

Hinge is a convex, upper bound on $0-1$ loss. Not differentiable at $m=1$. We have a "margin error" when $m<1$.

Support Vector Machine

- Hypothesis space $\mathcal{F}=\left\{f(x)=w^{T} x+b \mid w \in \mathbf{R}^{d}, b \in \mathbf{R}\right\}$.
- ℓ_{2} regularization (Tikhonov style)
- Loss $\ell(m)=\max \{1-m, 0\}=(1-m)_{+}$
- The SVM prediction function is the solution to

$$
\min _{w \in \mathbf{R}^{d}, b \in \mathbf{R}} \frac{1}{2}\|w\|^{2}+\frac{c}{n} \sum_{i=1}^{n} \max \left(0,1-y_{i}\left[w^{T} x_{i}+b\right]\right) .
$$

SVM Optimization Problem (Tikhonov Version)

The SVM prediction function is the solution to

$$
\min _{w \in \mathbf{R}^{d}, b \in \mathbf{R}} \frac{1}{2}\|w\|^{2}+\frac{c}{n} \sum_{i=1}^{n} \max \left(0,1-y_{i}\left[w^{T} x_{i}+b\right]\right) .
$$

- unconstrained optimization
- not differentiable because of the max (right at the border of a margin error)
- Can we reformulate into a differentiable problem?

SVM Optimization Problem

- The SVM optimization problem is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2}\|w\|^{2}+\frac{c}{n} \sum_{i=1}^{n} \xi_{i} \\
\text { subject to } & \xi_{i} \geqslant \max \left(0,1-y_{i}\left[w^{\top} x_{i}+b\right]\right) .
\end{array}
$$

- Which is equivalent to

$$
\begin{array}{ll}
\text { minimize } & \frac{1}{2}\|w\|^{2}+\frac{c}{n} \sum_{i=1}^{n} \xi_{i} \\
\text { subject to } & \xi_{i} \geqslant\left(1-y_{i}\left[w^{T} x_{i}+b\right]\right) \text { for } i=1, \ldots, n \\
& \xi_{i} \geqslant 0 \text { for } i=1, \ldots, n
\end{array}
$$

SVM as a Quadratic Program

- The SVM optimization problem is equivalent to

$$
\begin{array}{ll}
\text { minimize } & \frac{1}{2}\|w\|^{2}+\frac{c}{n} \sum_{i=1}^{n} \xi_{i} \\
\text { subject to } & -\xi_{i} \leqslant 0 \text { for } i=1, \ldots, n \\
& \left(1-y_{i}\left[w^{\top} x_{i}+b\right]\right)-\xi_{i} \leqslant 0 \text { for } i=1, \ldots, n
\end{array}
$$

- Differentiable objective function
- $n+d+1$ unknowns and $2 n$ affine constraints.
- A quadratic program that can be solved by any off-the-shelf QP solver.
- Let's learn more by examining the dual.

The SVM Dual Problem

SVM Lagrange Multipliers

$$
\begin{array}{ll}
\text { minimize } & \frac{1}{2}\|w\|^{2}+\frac{c}{n} \sum_{i=1}^{n} \xi_{i} \\
\text { subject to } & -\xi_{i} \leqslant 0 \text { for } i=1, \ldots, n \\
& \left(1-y_{i}\left[w^{T} x_{i}+b\right]\right)-\xi_{i} \leqslant 0 \text { for } i=1, \ldots, n
\end{array}
$$

Lagrange Multiplier	Constraint
λ_{i}	$-\xi_{i} \leqslant 0$
α_{i}	$\left(1-y_{i}\left[w^{\top} x_{i}+b\right]\right)-\xi_{i} \leqslant 0$

$$
L(w, b, \xi, \alpha, \lambda)=\frac{1}{2}\|w\|^{2}+\frac{c}{n} \sum_{i=1}^{n} \xi_{i}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left[w^{\top} x_{i}+b\right]-\xi_{i}\right)+\sum_{i=1}^{n} \lambda_{i}\left(-\xi_{i}\right)
$$

SVM Lagrangian

- The Lagrangian for this formulation is

$$
\begin{aligned}
& L(w, b, \xi, \alpha, \lambda) \\
= & \frac{1}{2}\|w\|^{2}+\frac{c}{n} \sum_{i=1}^{n} \xi_{i}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left[w^{T} x_{i}+b\right]-\xi_{i}\right)-\sum_{i} \lambda_{i} \xi_{i} \\
= & \frac{1}{2} w^{T} w+\sum_{i=1}^{n} \xi_{i}\left(\frac{c}{n}-\alpha_{i}-\lambda_{i}\right)+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left[w^{T} x_{i}+b\right]\right) .
\end{aligned}
$$

- Primal and dual:

$$
\begin{aligned}
p^{*} & =\inf _{w, \xi, b, \sup _{\alpha, \lambda \succeq 0} L(w, b, \xi, \alpha, \lambda)} \\
& \geqslant \sup _{\alpha, \lambda \succeq 0} \inf _{w, b, \xi} L(w, b, \xi, \alpha, \lambda)=d^{*}
\end{aligned}
$$

- Do we have $p^{*}=d^{*}$?

Strong Duality by Slater's constraint qualification

- The SVM optimization problem:

$$
\begin{array}{ll}
\text { minimize } & \frac{1}{2}\|w\|^{2}+\frac{c}{n} \sum_{i=1}^{n} \xi_{i} \\
\text { subject to } & -\xi_{i} \leqslant 0 \text { for } i=1, \ldots, n \\
& \left(1-y_{i}\left[w^{\top} x_{i}+b\right]\right)-\xi_{i} \leqslant 0 \text { for } i=1, \ldots, n
\end{array}
$$

- Convex problem + affine constraints \Longrightarrow strong duality iff problem is feasible
- Constraints are satisfied by $w=b=0$ and $\xi_{i}=1$ for $i=1, \ldots, n$,
- so we have strong duality \Longrightarrow

$$
\begin{aligned}
p^{*} & =\inf _{w, \xi, b} \sup _{\alpha, \lambda \succeq 0} L(w, b, \xi, \alpha, \lambda) \\
& =\sup _{\alpha, \lambda \succeq 0} \inf _{w, b, \xi} L(w, b, \xi, \alpha, \lambda)=d^{*}
\end{aligned}
$$

SVM Dual Function

- Lagrange dual is the inf over primal variables of the Lagrangian:

$$
\begin{aligned}
& g(\alpha, \lambda)=\inf _{w, b, \xi} L(w, b, \xi, \alpha, \lambda) \\
= & \inf _{w, b, \xi}\left[\frac{1}{2} w^{\top} w+\sum_{i=1}^{n} \xi_{i}\left(\frac{c}{n}-\alpha_{i}-\lambda_{i}\right)+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left[w^{\top} x_{i}+b\right]\right)\right]
\end{aligned}
$$

- Taking inf of convex and differentiable function of w, b, ξ.
- Quadratic in w and linear in ξ and b.
- Thus optimal point iff $\partial_{w} L=0 \partial_{b} L=0 \partial_{\xi} L=0$

SVM Dual Function: First Order Conditions

Lagrange dual function is the inf over primal variables of L :

$$
\begin{aligned}
& \quad g(\alpha, \lambda)=\inf _{w, b, \xi} L(w, b, \xi, \alpha, \lambda) \\
& =\inf _{w, b, \xi}\left[\frac{1}{2} w^{T} w+\sum_{i=1}^{n} \xi_{i}\left(\frac{c}{n}-\alpha_{i}-\lambda_{i}\right)+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left[w^{T} x_{i}+b\right]\right)\right] \\
& \partial_{w} L=0 \Longleftrightarrow w-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}=0 \Longleftrightarrow w=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} \\
& \partial_{b} L=0 \Longleftrightarrow-\sum_{i=1}^{n} \alpha_{i} y_{i}=0 \Longleftrightarrow \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
& \partial_{\xi_{i}} L=0 \Longleftrightarrow \frac{c}{n}-\alpha_{i}-\lambda_{i}=0 \Longleftrightarrow \alpha_{i}+\lambda_{i}=\frac{c}{n}
\end{aligned}
$$

The SVM Dual Problem

- Using 1st order conditions, and some massaging, the SVM dual problem is:

$$
\begin{array}{ll}
\sup _{\alpha} & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i} \\
\text { s.t. } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
& \alpha_{i} \in\left[0, \frac{c}{n}\right] i=1, \ldots, n .
\end{array}
$$

- Given solution α^{*} to dual, primal solution is $w^{*}=\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} x_{i}$.
- w^{*} is "in the span of the data" - i.e. a linear combination of x_{1}, \ldots, x_{n}.
- Note $\alpha_{i}^{*} \in\left[0, \frac{c}{n}\right]$. So c controls max weight on each example. (Robustness!)

SVM Dual Problem

$$
\begin{array}{ll}
\sup _{\alpha} & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i} \\
\text { s.t. } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
& \alpha_{i} \in\left[0, \frac{c}{n}\right] i=1, \ldots, n .
\end{array}
$$

- Quadratic objective in n unknowns and $n+1$ constraints
- Efficient minimization algorithm: SMO (sequential minimal optimization)
- What other insights can we get from the dual formulation?

Insights From Complementary Slackness:
 Margin and Support Vectors

The Margin and Some Terminology

- For notational convenience, define $f^{*}(x)=x^{\top} w^{*}+b^{*}$.
- Margin $y f^{*}(x)$

- Incorrect classification: $y f^{*}(x) \leqslant 0$.
- Margin error: $y f^{*}(x)<1$.
- "On the margin": $y f^{*}(x)=1$.
- "Good side of the margin": $y f^{*}(x)>1$.

Support Vectors and The Margin

- Recall "slack variable" $\xi_{i}^{*}=\max \left(0,1-y_{i} f^{*}\left(x_{i}\right)\right)$ is the hinge loss on $\left(x_{i}, y_{i}\right)$.
- Suppose $\xi_{i}^{*}=0$.
- Then $y_{i} f^{*}\left(x_{i}\right) \geqslant 1$
- "on the margin" (=1), or
- "on the good side" (>1)

Complementary Slackness Conditions

- Recall our primal constraints and Lagrange multipliers:

Lagrange Multiplier	Constraint
λ_{i}	$-\xi_{i} \leqslant 0$
α_{i}	$\left(1-y_{i} f\left(x_{i}\right)\right)-\xi_{i} \leqslant 0$

- Recall first order condition $\nabla_{\xi_{i}} L=0$ gave us $\lambda_{i}^{*}=\frac{c}{n}-\alpha_{i}^{*}$.
- By strong duality, we must have complementary slackness:

$$
\begin{aligned}
\alpha_{i}^{*}\left(1-y_{i} f^{*}\left(x_{i}\right)-\xi_{i}^{*}\right) & =0 \\
\lambda_{i}^{*} \xi_{i}^{*}=\left(\frac{c}{n}-\alpha_{i}^{*}\right) \xi_{i}^{*} & =0
\end{aligned}
$$

Consequences of Complementary Slackness

- By strong duality, we must have complementary slackness:

$$
\begin{aligned}
\alpha_{i}^{*}\left(1-y_{i} f^{*}\left(x_{i}\right)-\xi_{i}^{*}\right) & =0 \\
\left(\frac{c}{n}-\alpha_{i}^{*}\right) \xi_{i}^{*} & =0
\end{aligned}
$$

- If $y_{i} f^{*}\left(x_{i}\right)>1$ then the margin loss is $\xi_{i}^{*}=0$, and we get $\alpha_{i}^{*}=0$.
- If $y_{i} f^{*}\left(x_{i}\right)<1$ then the margin loss is $\xi_{i}^{*}>0$, so $\alpha_{i}^{*}=\frac{c}{n}$.
- If $\alpha_{i}^{*}=0$, then $\xi_{i}^{*}=0$, which implies no loss, so $y_{i} f^{*}\left(x_{i}\right) \geqslant 1$.
- If $\alpha_{i}^{*} \in\left(0, \frac{c}{n}\right)$, then $\xi_{i}^{*}=0$, which implies $1-y_{i} f^{*}\left(x_{i}\right)=0$.

Complementary Slackness Results: Summary

$$
\begin{aligned}
& \alpha_{i}^{*}=0 \Longrightarrow \\
& y_{i} f^{*}\left(x_{i}\right) \geqslant 1 \\
& \alpha_{i}^{*} \in\left(0, \frac{c}{n}\right) \Longrightarrow \\
& y_{i} f^{*}\left(x_{i}\right)=1 \\
& \alpha_{i}^{*}=\frac{c}{n} \Longrightarrow \\
& y_{i} f^{*}\left(x_{i}\right) \leqslant 1 \\
& y_{i} f^{*}\left(x_{i}\right)<1 \Longrightarrow \\
& y_{i} f^{*}\left(x_{i}\right)=1 \Longrightarrow \\
& y_{i}^{*}=\frac{c}{n} \\
& y_{i} f^{*}\left(x_{i}\right)>1 \Longrightarrow \alpha_{i}^{*} \in\left[0, \frac{c}{n}\right] \\
& \alpha_{i}^{*}=0
\end{aligned}
$$

Support Vectors

- If α^{*} is a solution to the dual problem, then primal solution is

$$
w^{*}=\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} x_{i}
$$

with $\alpha_{i}^{*} \in\left[0, \frac{c}{n}\right]$.

- The x_{i}^{\prime} 's corresponding to $\alpha_{i}^{*}>0$ are called support vectors.
- Few margin errors or "on the margin" examples \Longrightarrow sparsity in input examples.

Complementary Slackness To Get b^{*}

The Bias Term: b

- For our SVM primal, the complementary slackness conditions are:

$$
\begin{align*}
\alpha_{i}^{*}\left(1-y_{i}\left[x_{i}^{\top} w^{*}+b\right]-\xi_{i}^{*}\right) & =0 \tag{1}\\
\lambda_{i}^{*} \xi_{i}^{*}=\left(\frac{c}{n}-\alpha_{i}^{*}\right) \xi_{i}^{*} & =0 \tag{2}
\end{align*}
$$

- Suppose there's an i such that $\alpha_{i}^{*} \in\left(0, \frac{c}{n}\right)$.
- (2) implies $\xi_{i}^{*}=0$.
- (1) implies

$$
\begin{array}{ll}
& y_{i}\left[x_{i}^{T} w^{*}+b^{*}\right]=1 \\
\Longleftrightarrow & x_{i}^{T} w^{*}+b^{*}=y_{i}\left(\text { use } y_{i} \in\{-1,1\}\right) \\
\Longleftrightarrow & b^{*}=y_{i}-x_{i}^{T} w^{*}
\end{array}
$$

The Bias Term: b

- The optimal b is

$$
b^{*}=y_{i}-x_{i}^{T} w^{*}
$$

- We get the same b^{*} for any choice of i with $\alpha_{i}^{*} \in\left(0, \frac{c}{n}\right)$
- With exact calculations!
- With numerical error, more robust to average over all eligible i 's:

$$
b^{*}=\operatorname{mean}\left\{y_{i}-x_{i}^{T} w^{*} \left\lvert\, \alpha_{i}^{*} \in\left(0, \frac{c}{n}\right)\right.\right\} .
$$

- If there are no $\alpha_{i}^{*} \in\left(0, \frac{c}{n}\right)$?
- Then we have a degenerate SVM training problem ${ }^{1}\left(w^{*}=0\right)$.

[^0]
Teaser for Kernelization

Dual Problem: Dependence on x through inner products

- SVM Dual Problem:

$$
\begin{array}{ll}
\sup _{\alpha} & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i} \\
\text { s.t. } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
& \alpha_{i} \in\left[0, \frac{c}{n}\right] i=1, \ldots, n .
\end{array}
$$

- Note that all dependence on inputs x_{i} and x_{j} is through their inner product: $\left\langle x_{j}, x_{i}\right\rangle=x_{j}^{T} x_{i}$.
- We can replace $x_{j}^{T} x_{i}$ by any other inner product...
- This is a "kernelized" objective function.

[^0]: ${ }^{1}$ See Rifkin et al.'s "A Note on Support Vector Machine Degeneracy", an MIT AI Lab Technical Report.

