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The SVM as a Quadratic Program J
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The Margin

Definition
The margin (or functional margin) for predicted score y and true class y € {—1,1} is yy. J

@ The margin often looks like yf(x), where f(x) is our score function.

@ The margin is a measure of how correct we are.
e We want to maximize the margin.

@ Most classification losses depend only on the margin.

(This is distinct from but related to geometric margin.)
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Hinge Loss

e SVM/Hinge loss: LHinge = max{l1—m,0} = (1—m)_
@ Margin m = yf(x); “Positive part” (x), =x1(x > 0).

Loss

== Zero_One

w
|

== Hinge

Loss(m)

Margin0m=yf(x)

Hinge is a convex, upper bound on 0—1 loss. Not differentiable at m = 1.
We have a “margin error” when m < 1.
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Support Vector Machine

Hypothesis space F = {f(x) =w'x+blweR? be R}.

{> regularization (Tikhonov style)

Loss £(m) =max{1—m,0} = (1—m)

The SVM prediction function is the solution to

. 1 5 C - T
we[?ndl,rl])eREHWH —i—n;max(o,l—yi [W x,-—i—b]).
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SVM Optimization Problem (Tikhonov Version)

The SVM prediction function is the solution to

: 1, 5 € T
min  =||lw||*+ - max (0, 1—y; |w' x;+b|).
g+ 5 3 max (0.1 [ T+ 8]
@ unconstrained optimization

e not differentiable because of the max (right at the border of a margin error)

o Can we reformulate into a differentiable problem?
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SVM Optimization Problem

@ The SVM optimization problem is equivalent to
mimize  Llwi?+ Y e
minimize —|lw — ;
2 n— '
subject to &; > max (O,l—y,- [WTX,-—i-b]).
@ Which is equivalent to
minimize 1||W||2+ ¢ ié'
2 i3 I

subject to &; (1—y,- [WTX,'—i-b]) fori=1,...,n
0

fori=1,...,n
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SVM as a Quadratic Program

The SVM optimization problem is equivalent to

e 1, » Cw
minimize §||W|| +nZI£i
=
subject to —&;, <0fori=1,..., n
(1—}/i[WTXi+b])—E,,-<0fori:1 ,,,,, n

Differentiable objective function
n+d 41 unknowns and 2n affine constraints.

A quadratic program that can be solved by any off-the-shelf QP solver.

Let's learn more by examining the dual.
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The SVM Dual Problem J
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SVM Lagrange Multipliers

L 1 c o
minimize  =|lw|®+ = E &

2 n—=

iz

subject to —&; <0for i_= 1,...,n
(1—Yi [WTXi+b])—E,;<Ofor i=1,...,n

| Lagrange Multiplier | Constraint |
A -&i <0
o (1—y,- [wa,-+b])—£,-<0

L(W,b,E,,oc,)\)——IIW||2+ ZE,—i—Zoc, (1—y; [wTx;+b] — +Z7\

i=1

" David S. Rosenberg (Bloomberg ML EDU) October 11, 2017  10/28



SVM Lagrangian

@ The Lagrangian for this formulation is

(Wbaam

= SlwlP+< ZHZ"" (1—yi[w'xi+b] — ZAE,,

c
— 5WTw+ 'El & (; —cx,-—7\,-) - El o (L—yi [w'x+b]).
@ Primal and dual:

p* = inf sup L(w,b,E, ,A)
w,&b x A>0

> sup inf L(w,b & ox,A)=d*
A0 Wb, &

@ Do we have p* = d*?
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Strong Duality by Slater’s constraint qualification

@ The SVM optimization problem:
1 € —
. 2 )
minimize §||w|| + . E 1 &
=

subject to —&; <0fori=1,...,n
(1—yi [WTX;+b])—£;<0for i=1,...,n

e Convex problem + affine constraints = strong duality iff problem is feasible
o Constraints are satisfied by w=b=0and £, =1fori=1,...,n,
e so we have strong duality —
p* = inf sup L(w,b,& & N)
w,&bx A-0

= sup inf L(w,b& o,A\)=d*
A=W b.E
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SVM Dual Function

@ Lagrange dual is the inf over primal variables of the Lagrangian:

gla,A\) = er;)f‘E L(w,b,&, o, A)

) 1 ‘ c ‘
= wl,ry,ca [2WTW+;EJ (;_(Xi_)\i) +;“i (1—yi[wx+b])

@ Taking inf of convex and differentiable function of w, b, &.
e Quadratic in w and linear in & and b.

@ Thus optimal point iff 9,,L =00,L=00:L=0
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SVM Dual Function: First Order Conditions

Lagrange dual function is the inf over primal variables of L:

glo,A) = vJ,T,CaL(W' b, &, o, A)

© i S e Sl

i=1

n n
l=0 = w—) ayxi=0 < |[w=) oy
i=1 i=1

abL:O < —Z(X;y,'zo < Zoc,-y,-:O
i=1 i=1

BeL=0 = T—a—A=0 <> |a+A="
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The SVM Dual Problem

@ Using 1st order conditions, and some massaging, the SVM dual problem is:

n n
1
sup Z Xj— 5 Z (X,'Oij,'ijJ-TX;
& i=1 ij=1
n
s.t. Z xiyi =0
i=1

oc,-E[O,E} i=1...n
n

e Given solution o* to dual, primal solution is w* =Y 7 ; ofy;ix;.
@ w* is “in the span of the data” — i.e. a linear combination of xq, ..., x,.

e Note & € [0, €]. So ¢ controls max weight on each example. (Robustness!)
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SVM Dual Problem

n n
1 T
sup Z X — § Z oc,-ocjy,-ijj Xj
& i=1 ij=1
n
s.t. Z oiyi=0
i=1

oc,-e[o,f} i=1....n
n

@ Quadratic objective in n unknowns and n+1 constraints

e Efficient minimization algorithm: SMO (sequential minimal optimization)

@ What other insights can we get from the dual formulation?
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Insights From Complementary Slackness:
Margin and Support Vectors
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The Margin and Some Terminology

@ For notational convenience, define f*(x) = x " w* + b*.
o Margin yf*(x)

Loss(m)
1
b
s
o

0
Margin m=yf(x)

@ Incorrect classification: yf*(x) < 0.

@ Margin error: yf*(x) < 1.

@ “On the margin™: yf*(x) =1.

@ “Good side of the margin™: yf*(x) > 1.
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Support Vectors and The Margin

@ Recall “slack variable” £ =max(0,1—y;f*(x;)) is the hinge loss on (x;, yi).
@ Suppose &F =0.
@ Then y;f* (X,') >1

e ‘on the margin” (=1), or
e “on the good side” (> 1)
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Complementary Slackness Conditions

@ Recall our primal constraints and Lagrange multipliers:

Lagrange Multiplier \ Constraint
7\,‘ ‘ai X
X (1 Yi ( I)) Evl X

@ Recall first order condition V¢, L =0 gave us A} = & — .

@ By strong duality, we must have complementary slackness:

of (1—yif*(x;)—&)=0
C

N = (S—ar) e =0
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Consequences of Complementary Slackness

By strong duality, we must have complementary slackness:

o (1—yif*(xi) — &) =0
(5-oi)s -0

If yif*(x;) > 1 then the margin loss is £ =0, and we get &} =0.
If yif*(x;) <1 then the margin loss is £/ >0, so off = +.

If ot =0, then &7 =0, which implies no loss, so y;f*(x;) > 1.
If of € (0,€), then £F =0, which implies 1—y;f*(x;) =0.
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Complementary Slackness Results: Summary

o
o € <0,

oF
yif *(xi) <1
yif*(xi) =1
yif*(xi) > 1

sia ll
SIo~— o

I

I

Ll
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Support Vectors

o If o* is a solution to the dual problem, then primal solution is

n
w* = Z o YiX;
i=1
with o € [0, 7].

@ The x;'s corresponding to ocf > 0 are called support vectors.

e Few margin errors or “on the margin” examples = sparsity in input examples.
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Complementary Slackness To Get b* J
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The Bias Term: b

@ For our SVM primal, the complementary slackness conditions are:
of (I—y; [x,-TW*—l—b]—E}") =0 (1)
M= (S—ar)Er =0 (2)

@ Suppose there's an i such that o € (0, %)
o (2) implies &7 =0.
@ (1) implies

yi [} w+b*] =1
= X/ w'+b =y, (use y; €{-1,1})

-
— |[b =y —x

W*
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The Bias Term: b

@ The optimal b is
b* =y —x" w*

@ We get the same b* for any choice of i with «} € (0, €)

o With exact calculations!

@ With numerical error, more robust to average over all eligible i's:
* T . * * ¢

b* =meansyi—x' w* ;€ (0,—)¢.
n

o If there are no «f € (0,€)?
o Then we have a degenerate SVM training problem! (w* =0).

1See Rifkin et al.'s “A Note on Support Vector Machine Degeneracy”, an MIT Al Lab Technical Report.
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Teaser for Kernelization J
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Dual Problem: Dependence on x through inner products

@ SVM Dual Problem:

n n
1
sup D=5 ) oy X
& i=1 ij=1
n
s.t. Z ojyi =0
i=1

oc;E[O,E} i=1...n
n

o Note that all dependence on inputs x; and x; is through their inner product: (x;, x;) :ijx,-.

@ We can replace ijx,- by any other inner product...

@ This is a "kernelized” objective function.
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