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The SVM as a Quadratic Program
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The Margin

Definition
The margin (or functional margin) for predicted score ŷ and true class y ∈ {−1,1} is y ŷ .

The margin often looks like yf (x), where f (x) is our score function.
The margin is a measure of how correct we are.

We want to maximize the margin.

Most classification losses depend only on the margin.

(This is distinct from but related to geometric margin.)
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Hinge Loss

SVM/Hinge loss: `Hinge =max {1−m,0}= (1−m)+
Margin m = yf (x); “Positive part” (x)+ = x1(x > 0).

Hinge is a convex, upper bound on 0−1 loss. Not differentiable at m = 1.
We have a “margin error” when m < 1.
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Support Vector Machine

Hypothesis space F =
{
f (x) = wT x +b | w ∈ Rd ,b ∈ R

}
.

`2 regularization (Tikhonov style)
Loss `(m) =max {1−m,0}= (1−m)+

The SVM prediction function is the solution to

min
w∈Rd ,b∈R

1
2
||w ||2+

c

n

n∑
i=1

max
(
0,1− yi

[
wT xi +b

])
.
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SVM Optimization Problem (Tikhonov Version)

The SVM prediction function is the solution to

min
w∈Rd ,b∈R

1
2
||w ||2+

c

n

n∑
i=1

max
(
0,1− yi

[
wT xi +b

])
.

unconstrained optimization
not differentiable because of the max (right at the border of a margin error)
Can we reformulate into a differentiable problem?
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SVM Optimization Problem

The SVM optimization problem is equivalent to

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to ξi >max
(
0,1− yi

[
wT xi +b

])
.

Which is equivalent to

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to ξi >
(
1− yi

[
wT xi +b

])
for i = 1, . . . ,n

ξi > 0 for i = 1, . . . ,n
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SVM as a Quadratic Program

The SVM optimization problem is equivalent to

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to −ξi 6 0 for i = 1, . . . ,n(
1− yi

[
wT xi +b

])
−ξi 6 0 for i = 1, . . . ,n

Differentiable objective function
n+d +1 unknowns and 2n affine constraints.
A quadratic program that can be solved by any off-the-shelf QP solver.
Let’s learn more by examining the dual.
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The SVM Dual Problem
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SVM Lagrange Multipliers

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to −ξi 6 0 for i = 1, . . . ,n(
1− yi

[
wT xi +b

])
−ξi 6 0 for i = 1, . . . ,n

Lagrange Multiplier Constraint
λi -ξi 6 0
αi

(
1− yi

[
wT xi +b

])
−ξi 6 0

L(w ,b,ξ,α,λ) =
1
2
||w ||2+

c

n

n∑
i=1

ξi +

n∑
i=1

αi

(
1− yi

[
wT xi +b

]
−ξi

)
+

n∑
i=1

λi (−ξi )
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SVM Lagrangian

The Lagrangian for this formulation is

L(w ,b,ξ,α,λ)

=
1
2
||w ||2+

c

n

n∑
i=1

ξi +

n∑
i=1

αi

(
1− yi

[
wT xi +b

]
−ξi

)
−
∑
i

λiξi

=
1
2
wTw +

n∑
i=1

ξi

(c
n
−αi −λi

)
+

n∑
i=1

αi

(
1− yi

[
wT xi +b

])
.

Primal and dual:

p∗ = inf
w ,ξ,b

sup
α,λ�0

L(w ,b,ξ,α,λ)

> sup
α,λ�0

inf
w ,b,ξ

L(w ,b,ξ,α,λ) = d∗

Do we have p∗ = d∗?
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Strong Duality by Slater’s constraint qualification

The SVM optimization problem:

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to −ξi 6 0 for i = 1, . . . ,n(
1− yi

[
wT xi +b

])
−ξi 6 0 for i = 1, . . . ,n

Convex problem + affine constraints =⇒ strong duality iff problem is feasible
Constraints are satisfied by w = b = 0 and ξi = 1 for i = 1, . . . ,n,

so we have strong duality =⇒

p∗ = inf
w ,ξ,b

sup
α,λ�0

L(w ,b,ξ,α,λ)

= sup
α,λ�0

inf
w ,b,ξ

L(w ,b,ξ,α,λ) = d∗
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SVM Dual Function

Lagrange dual is the inf over primal variables of the Lagrangian:

g(α,λ) = inf
w ,b,ξ

L(w ,b,ξ,α,λ)

= inf
w ,b,ξ

[
1
2
wTw +

n∑
i=1

ξi

(c
n
−αi −λi

)
+

n∑
i=1

αi

(
1− yi

[
wT xi +b

])]

Taking inf of convex and differentiable function of w ,b,ξ.
Quadratic in w and linear in ξ and b.

Thus optimal point iff ∂wL= 0 ∂bL= 0 ∂ξL= 0
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SVM Dual Function: First Order Conditions

Lagrange dual function is the inf over primal variables of L:

g(α,λ) = inf
w ,b,ξ

L(w ,b,ξ,α,λ)

= inf
w ,b,ξ

[
1
2
wTw +

n∑
i=1

ξi

(c
n
−αi −λi

)
+

n∑
i=1

αi

(
1− yi

[
wT xi +b

])]

∂wL= 0 ⇐⇒ w −

n∑
i=1

αiyixi = 0 ⇐⇒ w =

n∑
i=1

αiyixi

∂bL= 0 ⇐⇒ −

n∑
i=1

αiyi = 0 ⇐⇒
n∑

i=1

αiyi = 0

∂ξi
L= 0 ⇐⇒ c

n
−αi −λi = 0 ⇐⇒ αi +λi =

c

n
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The SVM Dual Problem

Using 1st order conditions, and some massaging, the SVM dual problem is:

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Given solution α∗ to dual, primal solution is w∗ =
∑n

i=1α
∗
i yixi .

w∗ is “in the span of the data” – i.e. a linear combination of x1, . . . ,xn.

Note α∗i ∈ [0, cn ]. So c controls max weight on each example. (Robustness!)
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SVM Dual Problem

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Quadratic objective in n unknowns and n+1 constraints
Efficient minimization algorithm: SMO (sequential minimal optimization)
What other insights can we get from the dual formulation?
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Insights From Complementary Slackness:
Margin and Support Vectors
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The Margin and Some Terminology

For notational convenience, define f ∗(x) = xTw∗+b∗.
Margin yf ∗(x)

Incorrect classification: yf ∗(x)6 0.
Margin error: yf ∗(x)< 1.
“On the margin”: yf ∗(x) = 1.
“Good side of the margin”: yf ∗(x)> 1.

David S. Rosenberg (Bloomberg ML EDU) October 11, 2017 18 / 28



Support Vectors and The Margin

Recall “slack variable” ξ∗i =max(0,1− yi f
∗(xi )) is the hinge loss on (xi ,yi ).

Suppose ξ∗i = 0.
Then yi f

∗(xi )> 1

“on the margin” (= 1), or
“on the good side” (> 1)
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Complementary Slackness Conditions

Recall our primal constraints and Lagrange multipliers:

Lagrange Multiplier Constraint
λi -ξi 6 0
αi (1− yi f (xi ))−ξi 6 0

Recall first order condition ∇ξi
L= 0 gave us λ∗i =

c
n −α

∗
i .

By strong duality, we must have complementary slackness:

α∗i (1− yi f
∗(xi )−ξ

∗
i ) = 0

λ∗i ξ
∗
i =

(c
n
−α∗i

)
ξ∗i = 0
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Consequences of Complementary Slackness

By strong duality, we must have complementary slackness:

α∗i (1− yi f
∗(xi )−ξ

∗
i ) = 0(c

n
−α∗i

)
ξ∗i = 0

If yi f ∗(xi )> 1 then the margin loss is ξ∗i = 0, and we get α∗i = 0.
If yi f ∗(xi )< 1 then the margin loss is ξ∗i > 0, so α∗i =

c
n .

If α∗i = 0, then ξ∗i = 0, which implies no loss, so yi f
∗(xi )> 1.

If α∗i ∈
(
0, cn
)
, then ξ∗i = 0, which implies 1− yi f

∗(xi ) = 0.
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Complementary Slackness Results: Summary

α∗i = 0 =⇒ yi f
∗(xi )> 1

α∗i ∈
(
0,
c

n

)
=⇒ yi f

∗(xi ) = 1

α∗i =
c

n
=⇒ yi f

∗(xi )6 1

yi f
∗(xi )< 1 =⇒ α∗i =

c

n

yi f
∗(xi ) = 1 =⇒ α∗i ∈

[
0,
c

n

]
yi f
∗(xi )> 1 =⇒ α∗i = 0

David S. Rosenberg (Bloomberg ML EDU) October 11, 2017 22 / 28



Support Vectors

If α∗ is a solution to the dual problem, then primal solution is

w∗ =
n∑

i=1

α∗i yixi

with α∗i ∈ [0, cn ].
The xi ’s corresponding to α∗i > 0 are called support vectors.
Few margin errors or “on the margin” examples =⇒ sparsity in input examples.
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Complementary Slackness To Get b∗
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The Bias Term: b

For our SVM primal, the complementary slackness conditions are:

α∗i
(
1− yi

[
xTi w∗+b

]
−ξ∗i

)
= 0 (1)

λ∗i ξ
∗
i =

(c
n
−α∗i

)
ξ∗i = 0 (2)

Suppose there’s an i such that α∗i ∈
(
0, cn
)
.

(2) implies ξ∗i = 0.
(1) implies

yi
[
xTi w∗+b∗

]
= 1

⇐⇒ xTi w∗+b∗ = yi (use yi ∈ {−1,1})

⇐⇒ b∗ = yi − xTi w∗
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The Bias Term: b

The optimal b is
b∗ = yi − xTi w∗

We get the same b∗ for any choice of i with α∗i ∈
(
0, cn
)

With exact calculations!

With numerical error, more robust to average over all eligible i ’s:

b∗ =mean
{
yi − xTi w∗ | α∗i ∈

(
0,
c

n

)}
.

If there are no α∗i ∈
(
0, cn
)
?

Then we have a degenerate SVM training problem1 (w∗ = 0).

1See Rifkin et al.’s “A Note on Support Vector Machine Degeneracy”, an MIT AI Lab Technical Report.
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Teaser for Kernelization
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Dual Problem: Dependence on x through inner products

SVM Dual Problem:

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Note that all dependence on inputs xi and xj is through their inner product: 〈xj ,xi 〉= xTj xi .

We can replace xTj xi by any other inner product...
This is a “kernelized” objective function.
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