Subgradient Descent

David S. Rosenberg
Bloomberg ML EDU

October 18, 2017

Motivation and Review: Support Vector Machines

The Classification Problem

- Output space $y=\{-1,1\} \quad$ Action space $\mathcal{A}=\mathbf{R}$
- Real-valued prediction function $f: X \rightarrow \mathbf{R}$
- The value $f(x)$ is called the score for the input x.
- Intuitively, magnitude of the score represents the confidence of our prediction.
- Typical convention:

$$
\begin{aligned}
& f(x)>0 \Longrightarrow \text { Predict 1 } \\
& f(x)<0 \Longrightarrow \text { Predict -1 }
\end{aligned}
$$

(But we can choose other thresholds...)

The Margin

- The margin (or functional margin) for predicted score \hat{y} and true class $y \in\{-1,1\}$ is $y \hat{y}$.
- The margin often looks like $y f(x)$, where $f(x)$ is our score function.
- The margin is a measure of how correct we are.
- We want to maximize the margin.

[Margin-Based] Classification Losses

SVM/Hinge loss: $\ell_{\text {Hinge }}=\max \{1-m, 0\}=(1-m)_{+}$

Not differentiable at $m=1$. We have a "margin error" when $m<1$.

[Soft Margin] Linear Support Vector Machine (No Intercept)

- Hypothesis space $\mathcal{F}=\left\{f(x)=w^{T} x \mid w \in \mathbf{R}^{d}\right\}$.
- Loss $\ell(m)=\max (1, m)$
- ℓ_{2} regularization

$$
\min _{w \in \mathbf{R}^{d}} \sum_{i=1}^{n} \max \left(0,1-y_{i} w^{T} x_{i}\right)+\lambda\|w\|_{2}^{2}
$$

SVM Optimization Problem (no intercept)

- SVM objective function:

$$
J(w)=\frac{1}{n} \sum_{i=1}^{n} \max \left(0,1-y_{i}\left[w^{\top} x_{i}\right]\right)+\lambda\|w\|^{2} .
$$

- Not differentiable... but let's think about gradient descent anyway.
- Derivative of hinge loss $\ell(m)=\max (0,1-m)$:

$$
\ell^{\prime}(m)= \begin{cases}0 & m>1 \\ -1 & m<1 \\ \text { undefined } & m=1\end{cases}
$$

"Gradient" of SVM Objective

- We need gradient with respect to parameter vector $w \in \mathbf{R}^{d}$:

$$
\begin{aligned}
\nabla_{w} \ell\left(y_{i} w^{\top} x_{i}\right) & =\ell^{\prime}\left(y_{i} w^{\top} x_{i}\right) y_{i} x_{i} \text { (chain rule) } \\
& \left.=\left(\begin{array}{ll}
0 & y_{i} w^{\top} x_{i}>1 \\
-1 & y_{i} w^{\top} x_{i}<1 \\
\text { undefined } & y_{i} w^{\top} x_{i}=1
\end{array}\right) y_{i} x_{i} \text { (expanded } m \text { in } \ell^{\prime}(m)\right) \\
& = \begin{cases}0 & y_{i} w^{\top} x_{i}>1 \\
-y_{i} x_{i} & y_{i} w^{\top} x_{i}<1 \\
\text { undefined } & y_{i} w^{\top} x_{i}=1\end{cases}
\end{aligned}
$$

"Gradient" of SVM Objective

$$
\nabla_{w} \ell\left(y_{i} w^{T} x_{i}\right)= \begin{cases}0 & y_{i} w^{T} x_{i}>1 \\ -y_{i} x_{i} & y_{i} w^{\top} x_{i}<1 \\ \text { undefined } & y_{i} w^{\top} x_{i}=1\end{cases}
$$

So

$$
\begin{aligned}
\nabla_{w} J(w) & =\nabla_{w}\left(\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i} w^{T} x_{i}\right)+\lambda\|w\|^{2}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \nabla_{w} \ell\left(y_{i} w^{T} x_{i}\right)+2 \lambda w \\
& = \begin{cases}\frac{1}{n} \sum_{i: y_{i} w^{\top} x_{i}<1}\left(-y_{i} x_{i}\right)+2 \lambda w & \text { all } y_{i} w^{\top} x_{i} \neq 1 \\
\text { undefined } & \text { otherwise }\end{cases}
\end{aligned}
$$

Gradient Descent on SVM Objective?

- The gradient of the SVM objective is

$$
\nabla_{w} J(w)=\frac{1}{n} \sum_{i: y_{i} w^{T} x_{i}<1}\left(-y_{i} x_{i}\right)+2 \lambda w
$$

when $y_{i} w^{T} x_{i} \neq 1$ for all i, and otherwise is undefined.
Suppose we tried gradient descent on $J(w)$:

- If we start with a random w, will we ever hit $y_{i} w^{\top} x_{i}=1$?
- If we did, could we perturb the step size by ε to miss such a point?
- Does it even make sense to check $y_{i} w^{\top} x_{i}=1$ with floating point numbers?

Gradient Descent on SVM Objective?

- If we blindly apply gradient descent from a random starting point
- seems unlikely that we'll hit a point where the gradient is undefined.
- Still, doesn't mean that gradient descent will work if objective not differentiable!
- Theory of subgradients and subgradient descent will clear up any uncertainty.

Convexity and Sublevel Sets

Convex Sets

Definition

A set C is convex if the line segment between any two points in C lies in C.

Convex and Concave Functions

Definition

A function $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is convex if the line segment connecting any two points on the graph of f lies above the graph. f is concave if $-f$ is convex.

KPM Fig. 7.5

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leqslant 0, \quad i=1, \ldots, m
\end{array}
$$

where f_{0}, \ldots, f_{m} are convex functions.
Question: Is the \leqslant in the constraint just a convention? Could we also have used \geqslant or $=$?

Level Sets and Sublevel Sets

Let $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ be a function. Then we have the following definitions:
Definition
A level set or contour line for the value c is the set of points $x \in \mathbf{R}^{d}$ for which $f(x)=c$.

Definition
A sublevel set for the value c is the set of points $x \in \mathbf{R}^{d}$ for which $f(x) \leqslant c$.

Theorem
If $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is convex, then the sublevel sets are convex.
(Proof straight from definitions.)

Convex Function

Plot courtesy of Brett Bernstein.

Contour Plot Convex Function: Sublevel Set

Is the sublevel set $\{x \mid f(x) \leqslant 1\}$ convex?

Nonconvex Function

Plot courtesy of Brett Bernstein.

Contour Plot Nonconvex Function: Sublevel Set

Is the sublevel set $\{x \mid f(x) \leqslant 1\}$ convex?

Fact: Intersection of Convex Sets is Convex

Plot courtesy of Brett Bernstein.

Level and Superlevel Sets

Level sets and superlevel sets of convex functions are not generally convex.

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize	$f_{0}(x)$
subject to	$f_{i}(x) \leqslant 0, \quad i=1, \ldots, m$

where f_{0}, \ldots, f_{m} are convex functions.

- What can we say about each constraint set $\left\{x \mid f_{i}(x) \leqslant 0\right\}$? (convex)
- What can we say about the feasible set $\left\{x \mid f_{i}(x) \leqslant 0, i=1, \ldots, m\right\}$? (convex)

Convex Optimization Problem: Implicit Form

Convex Optimization Problem: Implicit Form

$\operatorname{minimize}$	$f(x)$
subject to	$x \in C$

where f is a convex function and C is a convex set.
An alternative "generic" convex optimization problem.

Convex and Differentiable Functions

First-Order Approximation

- Suppose $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is differentiable.
- Predict $f(y)$ given $f(x)$ and $\nabla f(x)$?
- Linear (i.e. "first order") approximation:

$$
f(y) \approx f(x)+\nabla f(x)^{T}(y-x)
$$

Boyd \& Vandenberghe Fig. 3.2

First-Order Condition for Convex, Differentiable Function

- Suppose $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is convex and differentiable.
- Then for any $x, y \in \mathbf{R}^{d}$

$$
f(y) \geqslant f(x)+\nabla f(x)^{T}(y-x)
$$

- The linear approximation to f at x is a global underestimator of f :

Figure from Boyd \& Vandenberghe Fig. 3.2; Proof in Section 3.1.3

First-Order Condition for Convex, Differentiable Function

- Suppose $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is convex and differentiable
- Then for any $x, y \in \mathbf{R}^{d}$

$$
f(y) \geqslant f(x)+\nabla f(x)^{T}(y-x)
$$

Corollary
If $\nabla f(x)=0$ then x is a global minimizer of f.
For convex functions, local information gives global information.

Subgradients

Subgradients

Definition

A vector $g \in \mathbf{R}^{d}$ is a subgradient of $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ at x if for all z,

$$
f(z) \geqslant f(x)+g^{T}(z-x) .
$$

Blue is a graph of $f(x)$.
Each red line $x \mapsto f\left(x_{0}\right)+g^{T}\left(x-x_{0}\right)$ is a global lower bound on $f(x)$.

Subdifferential

Definitions

- f is subdifferentiable at x if \exists at least one subgradient at x.
- The set of all subgradients at x is called the subdifferential: $\partial f(x)$

Basic Facts

- f is convex and differentiable $\Longrightarrow \partial f(x)=\{\nabla f(x)\}$.
- Any point x, there can be 0,1 , or infinitely many subgradients.
- $\partial f(x)=\emptyset \Longrightarrow f$ is not convex.

Globla Optimality Condition

Definition
A vector $g \in \mathbf{R}^{d}$ is a subgradient of $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ at x if for all z,

$$
f(z) \geqslant f(x)+g^{T}(z-x)
$$

Corollary
If $0 \in \partial f(x)$, then x is a global minimizer of f.

Subdifferential of Absolute Value

- Consider $f(x)=|x|$

- Plot on right shows $\{(x, g) \mid x \in \mathbf{R}, g \in \partial f(x)\}$

$f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+2\left|x_{2}\right|$

Subgradients of $f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+2\left|x_{2}\right|$

- Let's find the subdifferential of $f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+2\left|x_{2}\right|$ and $(3,0)$.
- First coordinate of subgradient must be 1 , from $\left|x_{1}\right|$ part (at $x_{1}=3$).
- Second coordinate of subgradient can be anything in $[-2,2]$.
- So graph of $h\left(x_{1}, x_{2}\right)=f(3,0)+g^{T}\left(x_{1}-3, x_{2}-0\right)$ is a global underestimate of $f\left(x_{1}, x_{2}\right)$, for any $g=\left(g_{1}, g_{2}\right)$, where $g_{1}=1$ and $g_{2} \in[-2,2]$.

Underestimating Hyperplane to $f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+2\left|x_{2}\right|$

Plot courtesy of Brett Bernstein.

Subdifferential on Contour Plot

$$
\partial f(3,0)=\left\{(1, b)^{T} \mid b \in[-2,2]\right\}
$$

Contour plot of $f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+2\left|x_{2}\right|$, with set of subgradients at $(3,0)$.

Contour Lines and Gradients

- For function $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$,
- graph of function lives in \mathbf{R}^{d+1},
- gradient and subgradient of f live in \mathbf{R}^{d}, and
- contours, level sets, and sublevel sets are in \mathbf{R}^{d}.
- $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ continuously differentiable, $\nabla f\left(x_{0}\right) \neq 0$, then $\nabla f\left(x_{0}\right)$ normal to level set

$$
S=\left\{x \in \mathbf{R}^{d} \mid f(x)=f\left(x_{0}\right)\right\} .
$$

- Proof sketch in notes.

Gradient orthogonal to sublevel sets

Plot courtesy of Brett Bernstein.

Contour Lines and Subgradients

Let $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ have a subgradient g at x_{0}.

- Hyperplane H orthogonal to g at x_{0} must support the level set $S=\left\{x \in \mathbf{R}^{d} \mid f(x)=f\left(x_{0}\right)\right\}$.
- i.e H contains x_{0} and all of S lies one one side of H.

Proof:

- For any y, we have $f(y) \geqslant f\left(x_{0}\right)+g^{T}\left(y-x_{0}\right)$. (def of subgradient)
- If y is strictly on side of H that g points in,
- then $g^{T}\left(y-x_{0}\right)>0$.
- So $f(y)>f\left(x_{0}\right)$.
- So y is not in the level set S.
- \therefore All elements of S must be on H or on the $-g$ side of H.

Subgradient of $f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+2\left|x_{2}\right|$

Plot courtesy of Brett Bernstein.

Subgradient of $f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+2\left|x_{2}\right|$

- Points on g side of H have larger f-values than $f\left(x_{0}\right)$. (from proof)
- But points on $-g$ side may not have smaller f-values.
- So -g may not be a descent direction. (shown in figure)

Subgradient Descent

Subgradient Descent

- Suppose f is convex, and we start optimizing at x_{0}.
- Repeat
- Step in a negative subgradient direction:

$$
x=x_{0}-t g,
$$

where $t>0$ is the step size and $g \in \partial f\left(x_{0}\right)$.
$-g$ not a descent direction - can this work?

Subgradient Gets Us Closer To Minimizer

Theorem

Suppose f is convex.

- Let $x=x_{0}-t g$, for $g \in \partial f\left(x_{0}\right)$.
- Let z be any point for which $f(z)<f\left(x_{0}\right)$.
- Then for small enough $t>0$,

$$
\|x-z\|_{2}<\left\|x_{0}-z\right\|_{2} .
$$

- Apply this with $z=x^{*} \in \arg \min _{x} f(x)$.
\Longrightarrow Negative subgradient step gets us closer to minimizer.

Subgradient Gets Us Closer To Minimizer (Proof)

- Let $x=x_{0}-t g$, for $g \in \partial f\left(x_{0}\right)$ and $t>0$.
- Let z be any point for which $f(z)<f\left(x_{0}\right)$.
- Then

$$
\begin{aligned}
\|x-z\|_{2}^{2} & =\left\|x_{0}-t g-z\right\|_{2}^{2} \\
& =\left\|x_{0}-z\right\|_{2}^{2}-2 \operatorname{tg}^{T}\left(x_{0}-z\right)+t^{2}\|g\|_{2}^{2} \\
& \leqslant\left\|x_{0}-z\right\|_{2}^{2}-2 t\left[f\left(x_{0}\right)-f(z)\right]+t^{2}\|g\|_{2}^{2}
\end{aligned}
$$

- Consider $-2 t\left[f\left(x_{0}\right)-f(z)\right]+t^{2}\|g\|_{2}^{2}$.
- It's a convex quadratic (facing upwards).
- Has zeros at $t=0$ and $t=2\left(f\left(x_{0}\right)-f(z)\right) /\|g\|_{2}^{2}>0$.
- Therefore, it's negative for any

$$
t \in\left(0, \frac{2\left(f\left(x_{0}\right)-f(z)\right)}{\|g\|_{2}^{2}}\right) .
$$

Based on Boyd EE364b: Subgradients Slides

Convergence Theorem for Fixed Step Size

Assume $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is convex and

- f is Lipschitz continuous with constant $G>0$:

$$
|f(x)-f(y)| \leqslant G\|x-y\| \text { for all } x, y
$$

Theorem

For fixed step size t, subgradient method satisfies:

$$
\lim _{k \rightarrow \infty} f\left(x_{\text {best }}^{(k)}\right) \leqslant f\left(x^{*}\right)+G^{2} t / 2
$$

Convergence Theorems for Decreasing Step Sizes

Assume $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is convex and

- f is Lipschitz continuous with constant $G>0$:

$$
|f(x)-f(y)| \leqslant G\|x-y\| \text { for all } x, y
$$

Theorem
For step size respecting Robbins-Monro conditions,

$$
\lim _{k \rightarrow \infty} f\left(x_{\text {best }}^{(k)}\right)=f\left(x^{*}\right)
$$

