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Motivation and Review: Support Vector Machines
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The Classification Problem

Output space Y= {−1,1} Action space A= R
Real-valued prediction function f : X→ R

The value f (x) is called the score for the input x .
Intuitively, magnitude of the score represents the confidence of our prediction.

Typical convention:

f (x)> 0 =⇒ Predict 1
f (x)< 0 =⇒ Predict −1

(But we can choose other thresholds...)
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The Margin

The margin (or functional margin) for predicted score ŷ and true class y ∈ {−1,1} is y ŷ .

The margin often looks like yf (x), where f (x) is our score function.

The margin is a measure of how correct we are.

We want to maximize the margin.
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[Margin-Based] Classification Losses

SVM/Hinge loss: `Hinge =max {1−m,0}= (1−m)+

Not differentiable at m = 1. We have a “margin error” when m < 1.
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[Soft Margin] Linear Support Vector Machine (No Intercept)

Hypothesis space F =
{
f (x) = wT x | w ∈ Rd

}
.

Loss `(m) =max(1,m)

`2 regularization

min
w∈Rd

n∑
i=1

max
(
0,1− yiw

T xi
)
+λ‖w‖22
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SVM Optimization Problem (no intercept)

SVM objective function:

J(w) =
1
n

n∑
i=1

max
(
0,1− yi

[
wT xi

])
+λ||w ||2.

Not differentiable... but let’s think about gradient descent anyway.

Derivative of hinge loss `(m) =max(0,1−m):

` ′(m) =


0 m > 1
−1 m < 1
undefined m = 1
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“Gradient” of SVM Objective

We need gradient with respect to parameter vector w ∈ Rd :

∇w `
(
yiw

T xi
)

= ` ′
(
yiw

T xi
)
yixi (chain rule)

=



0 yiw

T xi > 1
−1 yiw

T xi < 1
undefined yiw

T xi = 1

yixi (expanded m in ` ′(m))

=


0 yiw

T xi > 1
−yixi yiw

T xi < 1
undefined yiw

T xi = 1
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“Gradient” of SVM Objective

∇w `
(
yiw

T xi
)

=


0 yiw

T xi > 1
−yixi yiw

T xi < 1
undefined yiw

T xi = 1

So

∇wJ(w) = ∇w

(
1
n

n∑
i=1

`
(
yiw

T xi
)
+λ||w ||2

)

=
1
n

n∑
i=1

∇w `
(
yiw

T xi
)
+2λw

=

{
1
n

∑
i :yiwT xi<1 (−yixi )+2λw all yiwT xi 6= 1

undefined otherwise
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Gradient Descent on SVM Objective?

The gradient of the SVM objective is

∇wJ(w) =
1
n

∑
i :yiwT xi<1

(−yixi )+2λw

when yiw
T xi 6= 1 for all i , and otherwise is undefined.

Suppose we tried gradient descent on J(w):
If we start with a random w , will we ever hit yiwT xi = 1?
If we did, could we perturb the step size by ε to miss such a point?
Does it even make sense to check yiw

T xi = 1 with floating point numbers?
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Gradient Descent on SVM Objective?

If we blindly apply gradient descent from a random starting point
seems unlikely that we’ll hit a point where the gradient is undefined.

Still, doesn’t mean that gradient descent will work if objective not differentiable!

Theory of subgradients and subgradient descent will clear up any uncertainty.
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Convexity and Sublevel Sets
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Convex Sets

Definition
A set C is convex if the line segment between any two points in C lies in C .

KPM Fig. 7.4
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Convex and Concave Functions

Definition

A function f : Rd → R is convex if the line segment connecting any two points on the graph of
f lies above the graph. f is concave if −f is convex.

x y

λ
1 − λ

A B

KPM Fig. 7.5
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Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m

where f0, . . . , fm are convex functions.

Question: Is the 6 in the constraint just a convention? Could we also have used > or =?
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Level Sets and Sublevel Sets

Let f : Rd → R be a function. Then we have the following definitions:

Definition

A level set or contour line for the value c is the set of points x ∈ Rd for which f (x) = c .

Definition

A sublevel set for the value c is the set of points x ∈ Rd for which f (x)6 c .

Theorem

If f : Rd → R is convex, then the sublevel sets are convex.

(Proof straight from definitions.)
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Convex Function

Plot courtesy of Brett Bernstein.
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Contour Plot Convex Function: Sublevel Set

Is the sublevel set {x | f (x)6 1} convex?

Plot courtesy of Brett Bernstein.
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Nonconvex Function

Plot courtesy of Brett Bernstein.
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Contour Plot Nonconvex Function: Sublevel Set

Is the sublevel set {x | f (x)6 1} convex?

Plot courtesy of Brett Bernstein.
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Fact: Intersection of Convex Sets is Convex

Plot courtesy of Brett Bernstein.
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Level and Superlevel Sets

Level sets and superlevel sets of convex functions are not generally convex.

Plot courtesy of Brett Bernstein.
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Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m

where f0, . . . , fm are convex functions.

What can we say about each constraint set {x | fi (x)6 0}? (convex)
What can we say about the feasible set {x | fi (x)6 0, i = 1, . . . ,m}? (convex)
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Convex Optimization Problem: Implicit Form

Convex Optimization Problem: Implicit Form

minimize f (x)

subject to x ∈ C

where f is a convex function and C is a convex set.
An alternative “generic” convex optimization problem.
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Convex and Differentiable Functions
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First-Order Approximation

Suppose f : Rd → R is differentiable.
Predict f (y) given f (x) and ∇f (x)?
Linear (i.e. “first order”) approximation:

f (y)≈ f (x)+∇f (x)T (y − x)

Boyd & Vandenberghe Fig. 3.2

David S. Rosenberg (Bloomberg ML EDU) October 18, 2017 26 / 48



First-Order Condition for Convex, Differentiable Function

Suppose f : Rd → R is convex and differentiable.
Then for any x ,y ∈ Rd

f (y)> f (x)+∇f (x)T (y − x)

The linear approximation to f at x is a global underestimator of f :

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3
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First-Order Condition for Convex, Differentiable Function

Suppose f : Rd → R is convex and differentiable
Then for any x ,y ∈ Rd

f (y)> f (x)+∇f (x)T (y − x)

Corollary

If ∇f (x) = 0 then x is a global minimizer of f .

For convex functions, local information gives global information.
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Subgradients
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Subgradients

Definition

A vector g ∈ Rd is a subgradient of f : Rd → R at x if for all z ,

f (z)> f (x)+gT (z− x).

Blue is a graph of f (x).
Each red line x 7→ f (x0)+gT (x − x0) is a global lower bound on f (x).
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Subdifferential

Definitions
f is subdifferentiable at x if ∃ at least one subgradient at x .
The set of all subgradients at x is called the subdifferential: ∂f (x)

Basic Facts

f is convex and differentiable =⇒ ∂f (x) = {∇f (x)}.
Any point x , there can be 0, 1, or infinitely many subgradients.
∂f (x) = ∅ =⇒ f is not convex.
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Globla Optimality Condition

Definition

A vector g ∈ Rd is a subgradient of f : Rd → R at x if for all z ,

f (z)> f (x)+gT (z− x).

Corollary

If 0 ∈ ∂f (x), then x is a global minimizer of f .
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Subdifferential of Absolute Value

Consider f (x) = |x |

Plot on right shows {(x ,g) | x ∈ R, g ∈ ∂f (x)}

Boyd EE364b: Subgradients Slides
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f (x1,x2) = |x1|+2 |x2|

Plot courtesy of Brett Bernstein.
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Subgradients of f (x1,x2) = |x1|+2 |x2|

Let’s find the subdifferential of f (x1,x2) = |x1|+2 |x2| and (3,0).

First coordinate of subgradient must be 1, from |x1| part (at x1 = 3).

Second coordinate of subgradient can be anything in [−2,2].

So graph of h(x1,x2) = f (3,0)+gT (x1−3,x2−0) is a global underestimate of f (x1,x2),
for any g = (g1,g2) , where g1 = 1 and g2 ∈ [−2,2].
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Underestimating Hyperplane to f (x1,x2) = |x1|+2 |x2|

Plot courtesy of Brett Bernstein.
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Subdifferential on Contour Plot

Contour plot of f (x1,x2) = |x1|+2 |x2|, with set of subgradients at (3,0). .
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Contour Lines and Gradients

For function f : Rd → R,
graph of function lives in Rd+1,
gradient and subgradient of f live in Rd , and
contours, level sets, and sublevel sets are in Rd .

f : Rd → R continuously differentiable, ∇f (x0) 6= 0, then ∇f (x0) normal to level set

S =
{
x ∈ Rd | f (x) = f (x0)

}
.

Proof sketch in notes.
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Gradient orthogonal to sublevel sets

Plot courtesy of Brett Bernstein.
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Contour Lines and Subgradients

Let f : Rd → R have a subgradient g at x0.
Hyperplane H orthogonal to g at x0 must support the level set
S =
{
x ∈ Rd | f (x) = f (x0)

}
.

i.e H contains x0 and all of S lies one one side of H.

Proof:
For any y , we have f (y)> f (x0)+gT (y − x0). (def of subgradient)
If y is strictly on side of H that g points in,

then gT (y − x0)> 0.
So f (y)> f (x0).
So y is not in the level set S .

∴ All elements of S must be on H or on the −g side of H.
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Subgradient of f (x1,x2) = |x1|+2 |x2|

Plot courtesy of Brett Bernstein.
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Subgradient of f (x1,x2) = |x1|+2 |x2|

Points on g side of H have larger f -values than f (x0). (from proof)
But points on −g side may not have smaller f -values.
So −g may not be a descent direction. (shown in figure)

Plot courtesy of Brett Bernstein.
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Subgradient Descent
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Subgradient Descent

Suppose f is convex, and we start optimizing at x0.
Repeat

Step in a negative subgradient direction:

x = x0− tg ,

where t > 0 is the step size and g ∈ ∂f (x0).

−g not a descent direction – can this work?
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Subgradient Gets Us Closer To Minimizer

Theorem
Suppose f is convex.

Let x = x0− tg , for g ∈ ∂f (x0).
Let z be any point for which f (z)< f (x0).
Then for small enough t > 0,

‖x − z‖2 < ‖x0− z‖2.

Apply this with z = x∗ ∈ argminx f (x).

=⇒Negative subgradient step gets us closer to minimizer.
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Subgradient Gets Us Closer To Minimizer (Proof)

Let x = x0− tg , for g ∈ ∂f (x0) and t > 0.
Let z be any point for which f (z)< f (x0).
Then

‖x − z‖22 = ‖x0− tg − z‖22
= ‖x0− z‖22−2tgT (x0− z)+ t2‖g‖22
6 ‖x0− z‖22−2t [f (x0)− f (z)]+ t2‖g‖22

Consider −2t [f (x0)− f (z)]+ t2‖g‖22.
It’s a convex quadratic (facing upwards).
Has zeros at t = 0 and t = 2(f (x0)− f (z))/‖g‖22 > 0.
Therefore, it’s negative for any

t ∈
(
0,

2(f (x0)− f (z))

‖g‖22

)
.

Based on Boyd EE364b: Subgradients Slides
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Convergence Theorem for Fixed Step Size

Assume f : Rd → R is convex and
f is Lipschitz continuous with constant G > 0:

|f (x)− f (y)|6 G‖x − y‖ for all x ,y

Theorem
For fixed step size t, subgradient method satisfies:

lim
k→∞ f (x

(k)
best)6 f (x∗)+G 2t/2

Based on https://www.cs.cmu.edu/~ggordon/10725-F12/slides/06-sg-method.pdf
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Convergence Theorems for Decreasing Step Sizes

Assume f : Rd → R is convex and
f is Lipschitz continuous with constant G > 0:

|f (x)− f (y)|6 G‖x − y‖ for all x ,y

Theorem
For step size respecting Robbins-Monro conditions,

lim
k→∞ f (x

(k)
best) = f (x∗)

Based on https://www.cs.cmu.edu/~ggordon/10725-F12/slides/06-sg-method.pdf
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