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Setup and Motivation
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The Input Space X

Our general learning theory setup: no assumptions about X
But X= Rd for the specific methods we’ve developed:

Ridge regression
Lasso regression
Support Vector Machines

Our hypothesis space for these was all affine functions on Rd :

H =
{
x 7→ wT x +b | w ∈ Rd ,b ∈ R

}
.

What if we want to do prediction on inputs not natively in Rd?
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Feature Extraction

Definition

Mapping an input from X to a vector in Rd is called feature extraction or featurization.
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Linear Models with Explicit Feature Map

Input space: X (no assumptions)
Introduce feature map ψ : X→ Rd

The feature map maps into the feature space Rd .
Hypothesis space of affine functions on feature space:

H =
{
x 7→ wTψ(x)+b | w ∈ Rd ,b ∈ R

}
.
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Geometric Example: Two class problem, nonlinear boundary

With linear feature map φ(x) = (x1,x2) and linear models, can’t separate regions
With appropriate nonlinearity φ(x) =

(
x1,x2,x

2
1 + x2

2
)
, piece of cake.

Video: http://youtu.be/3liCbRZPrZA
From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Expressivity of Hypothesis Space

Consider a linear hypothesis space with a feature map φ : X→ Rd :

F =
{
f (x) = wTφ(x)

}

We can grow the linear hypothesis space F by adding more features.
From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Linear Models Need Big Feature Spaces

To get expressive hypothesis spaces using linear models,
need high-dimensional feature spaces

Suppose we start with x = (1,x1, . . . ,xd) ∈ Rd+1 = X.
We want to add all monomials of degree M: xp1

1 · · ·x
pd
d , with p1+ · · ·+pd =M.

How many features will we end up with?(
M+d−1

M

)
(“flower shop problem” from combinatorics)

For d = 40 and M = 8, we get 314457495 features.

That will make some extremely large matrices...
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Big Feature Spaces

Very large feature spaces have two problems:
1 Overfitting
2 Memory and computational costs

Overfitting we handle with regularization.

“Kernel methods” can (sometimes) help with memory and computational costs.
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Kernel Methods: Motivation
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Review: Linear SVM and Dual

The [featurized] SVM prediction function is the solution to

min
w∈Rd ,b∈R

1
2
||w ||2+

c

n

n∑
i=1

(
1− yi

[
wTψ(xi )+b

])
+
.

Found it is equivalent to solve the dual problem to get α∗:

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjψ(xj)
T ψ(xi )

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Notice: ψ(x)’s only show up as inner products with other x ’s.
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Some Methods Can Be “Kernelized”

Definition
A method is kernelized if inputs only appear inside inner products: 〈ψ(x),ψ(x ′)〉 for x ,x ′ ∈X.

The kernel function corresponding to ψ and inner product 〈·, ·〉 is

k(x ,x ′) =
〈
ψ(x),ψ(x ′)

〉
.

Why introduce this new notation k(x ,x ′)?

Turns out, we can often evaluate k(x ,x ′) directly,
without explicitly computing ψ(x) and ψ(x ′).

For large feature spaces, can be much faster.
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Kernel Evaluation Can Be Fast

Example

Quadratic feature map for x = (x1, . . . ,xd) ∈ Rd .

φ(x) = (x1, . . . ,xd ,x
2
1 , . . . ,x

2
d ,
√
2x1x2, . . . ,

√
2xixj , . . .

√
2xd−1xd)

T

has dimension O(d2), but for any x ,x ′ ∈ Rd

k(x ,x ′) =
〈
φ(x),φ(x ′)

〉
=
〈
x ,x ′

〉
+
〈
x ,x ′

〉2
Naively explicit computation of k(x ,x ′): O(d2)

Implicit computation of k(x ,x ′): O(d)
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Kernels as Similarity Scores

Often useful to think of the kernel function as a similarity score.
But this is not a mathematically precise statement.
There are many ways to design a similarity score.

We will use Mercer kernels, which correspond to inner products in some feature space.
Has many mathematical benefits.
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What are the Benefits of Kernelization?

1 Computational (e.g. when feature space dimension d larger than sample size n).
2 Access to infinite-dimensional feature spaces.
3 Allows thinking in terms of “similarity” rather than features.
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Example: SVM
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SVM Dual

Recall the SVM dual optimization problem for training set (x1,y1), . . . ,(xn,yn):

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Can replace xTj xi by an arbitrary kernel k(xj ,xi ).

What kernel are we currently using?
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Linear Kernel

Input space: X= Rd

Feature space: H = Rd , with standard inner product
Feature map

ψ(x) = x

Kernel:
k(x ,x ′) = xT x ′
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The Kernel Matrix (or the Gram Matrix)

Definition
For points of x1, . . . ,xn ∈ X and an inner product 〈·, ·〉 on X, the kernel matrix or the Gram
matrix is defined as

K =
(
〈xi ,xj〉

)
i ,j

=

〈x1,x1〉 · · · 〈x1,xn〉
...

. . . · · ·
〈xn,x1〉 · · · 〈xn,xn〉

 .

Then for the standard Euclidean inner product 〈xi ,xj〉= xTi xj , we have

K = XXT
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SVM Dual with Kernel Matrix

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjKji

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Once our algorithm works with kernel matrices, we can change kernel just by changing the
matrix.
Size of matrix: n×n, where n is the number of data points.
Recall with ridge regression, we worked with XTX , which is d ×d , where d is feature
space dimension.
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Some Nonlinear Kernels
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Quadratic Kernel in Rd

Input space X= Rd

Feature space: H = RD , where D = d +
(
d
2

)
≈ d2/2.

Feature map:

φ(x) = (x1, . . . ,xd ,x
2
1 , . . . ,x

2
d ,
√
2x1x2, . . . ,

√
2xixj , . . .

√
2xd−1xd)

T

Then for ∀x ,x ′ ∈ Rd

k(x ,x ′) =
〈
φ(x),φ(x ′)

〉
=

〈
x ,x ′

〉
+
〈
x ,x ′

〉2
Computation for inner product with explicit mapping: O(d2)

Computation for implicit kernel calculation: O(d).

Based on Guillaume Obozinski’s Statistical Machine Learning course at Louvain, Feb 2014.
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Polynomial Kernel in Rd

Input space X= Rd

Kernel function:
k(x ,x ′) =

(
1+
〈
x ,x ′

〉)M
Corresponds to a feature map with all monomials up to degree M.
For any M, computing the kernel has same computational cost
Cost of explicit inner product computation grows rapidly in M.
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Radial Basis Function (RBF) / Gaussian Kernel

Input space X= Rd . ∀x ,x ′ ∈ Rd ,

k(w ,x) = exp

(
−
‖x − x ′‖2

2σ2

)
,

where σ2 is known as the bandwidth parameter.
Does it act like a similarity score?
Why “radial”?
Have we departed from our “inner product of feature vector” recipe?

Yes and no: corresponds to an infinite dimensional feature vector

Probably the most common nonlinear kernel.
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Kernel Trick: Overview
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The “Kernel Trick”

1 Given a kernelized ML algorithm.
2 Can swap out the inner product for a new kernel function.
3 New kernel may correspond to a high dimensional feature space.
4 Once kernel matrix is computed, computational cost depends on number of data points,

rather than the dimension of feature space.

Swapping out a linear kernel for a new kernel is called the kernel trick.
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Inner Product Spaces and Projections (Hilbert Spaces)
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Inner Product Space (or “Pre-Hilbert” Spaces)

An inner product space (over reals) is a vector space V and an inner product, which is a
mapping

〈·, ·〉 : V×V→ R

that has the following properties ∀x ,y ,z ∈ V and a,b ∈ R:
Symmetry: 〈x ,y〉= 〈y ,x〉

Linearity: 〈ax +by ,z〉= a 〈x ,z〉+b 〈y ,z〉

Positive-definiteness: 〈x ,x〉> 0 and 〈x ,x〉= 0 ⇐⇒ x = 0.
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Norm from Inner Product

For an inner product space, we define a norm as

‖x‖=
√
〈x ,x〉.

Example

Rd with standard Euclidean inner product is an inner product space:

〈x ,y〉 := xT y ∀x ,y ∈ Rd .

Norm is
‖x‖=

√
xT x .
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What norms can we get from an inner product?

Theorem (Parallelogram Law)

A norm ‖ · ‖ can be written in terms of an inner product on V iff ∀x ,x ′ ∈ V

2‖x‖2+2‖x ′‖2 = ‖x + x ′‖2+‖x − x ′‖2,

and if it can, the inner product is given by the polarization identity

〈
x ,x ′

〉
=

||x ||2+ ||x ′||2− ||x − x ′||2

2
.

Example

`1 norm on Rd is NOT generated by an inner product. [Exercise]

Is `2 norm on Rd generated by an inner product?
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Pythagorean Theorem

Definition
Two vectors are orthogonal if 〈x ,x ′〉= 0. We denote this by x ⊥ x ′.

Definition
x is orthogonal to a set S , i.e. x ⊥ S , if x ⊥ s for all x ∈ S .

Theorem (Pythagorean Theorem)

If x ⊥ x ′, then ‖x + x ′‖2 = ‖x‖2+‖x ′‖2.

Proof.
We have

‖x + x ′‖2 =
〈
x + x ′,x + x ′

〉
= 〈x ,x〉+

〈
x ,x ′

〉
+
〈
x ′,x

〉
+
〈
x ′,x ′

〉
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Projection onto a Plane (Rough Definition)

Choose some x ∈ V.
Let M be a subspace of inner product space V.
Then m0 is the projection of x onto M,

if m0 ∈M and is the closest point to x in M.

In math: For all m ∈M,
‖x −m0‖6 ‖x −m‖.
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Hilbert Space

Projections exist for all finite-dimensional inner product spaces.
We want to allow infinite-dimensional spaces.
Need an extra condition called completeness.
A space is complete if all Cauchy sequences in the space converge.

Definition
A Hilbert space is a complete inner product space.

Example
Any finite dimensional inner product space is a Hilbert space.
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The Projection Theorem

Theorem (Classical Projection Theorem)

H a Hilbert space
M a closed subspace of H (picture a hyperplane through the origin)
For any x ∈H, there exists a unique m0 ∈M for which

‖x −m0‖6 ‖x −m‖ ∀m ∈M.

This m0 is called the [orthogonal] projection of x onto M.
Furthermore, m0 ∈M is the projection of x onto M iff

x −m0 ⊥M.
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Projection Reduces Norm

Theorem
Let M be a closed subspace of H. For any x ∈H, let m0 = ProjMx be the projection of x onto
M. Then

‖m0‖6 ‖x‖,

with equality only when m0 = x .

Proof.

‖x‖2 = ‖m0+(x −m0)‖2 (note: x −m0 ⊥m0 by Projection theorem)

= ‖m0‖2+‖x −m0‖2 by Pythagorean theorem
‖m0‖2 = ‖x‖2−‖x −m0‖2

Then ‖x −m0‖2 > 0 implies ‖m0‖2 6 ‖x‖2. If ‖x −m0‖2 = 0, then x =m0, by definition of
norm.
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Representer Theorem
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Generalize from SVM Objective

Featurized SVM objective:

min
w∈Rd

1
2
||w ||2+

c

n

n∑
i=1

max(0,1− yi [〈w ,ψ(xi )〉]) .

Generalized objective:

min
w∈H

R (‖w‖)+L(〈w ,ψ(x1)〉 , . . . ,〈w ,ψ(xn)〉) ,

where
R : R>0→ R is nondecreasing (Regularization term)
and L : Rn→ R is arbitrary. (Loss term)
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General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

min
w∈H

R (‖w‖)+L(〈w ,ψ(x1)〉 , . . . ,〈w ,ψ(xn)〉) ,

where
w ,ψ(x1), . . . ,ψ(xn) ∈H for some Hilbert space H. (We typically have H = Rd .)
‖ · ‖ is the norm corresponding to the inner product of H. (i.e. ‖w‖=

√
〈w ,w〉)

R : [0,∞)→ R is nondecreasing (Regularization term), and
L : Rn→ R is arbitrary (Loss term).
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General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

min
w∈H

R (‖w‖)+L(〈w ,ψ(x1)〉 , . . . ,〈w ,ψ(xn)〉) ,

What’s “linear”?
The prediction/score function x 7→ 〈w ,ψ(xi )〉 is linear – in what?

in parameter vector w , and
in the feature vector ψ(xi ).

Why? [Real-valued] inner products are linear in each argument.
The important part is the linearity in the parameter w .
When we discuss neural networks, we’ll mention a “linear network” in which prediction
functions are linear in the feature vector ψ(x), but nonlinear in the parameter vector w . In
other words, we have something like

min
w∈H

R (‖w‖)+L(〈f (w),ψ(x1)〉 , . . . ,〈f (w),ψ(xn)〉) ,

for some (known) nonlinear function f . Our discussion will not apply to this situation.
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General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

min
w∈H

R (‖w‖)+L(〈w ,ψ(x1)〉 , . . . ,〈w ,ψ(xn)〉) ,

Ridge regression and SVM are of this form.

What if we penalize with λ‖w‖2 instead of λ‖w‖22? Yes!.
What if we use lasso regression? No! `1 norm does not correspond to an inner product.
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The Representer Theorem

Theorem (Representer Theorem)

Let
J(w) = R (‖w‖)+L(〈w ,ψ(x1)〉 , . . . ,〈w ,ψ(xn)〉) ,

where
w ,ψ(x1), . . . ,ψ(xn) ∈H for some Hilbert space H. (We typically have H = Rd .)

‖ · ‖ is the norm corresponding to the inner product of H. (i.e. ‖w‖=
√
〈w ,w〉)

R : R>0→ R is nondecreasing (Regularization term), and
L : Rn→ R is arbitrary (Loss term).

If J(w) has a minimizer, then it has a minimizer of the form w∗ =
∑n

i=1αiψ(xi ).
[If R is strictly increasing, then all minimizers have this form. (Proof in homework.)]
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The Representer Theorem (Proof)

1 Let w∗ be a minimizer.
2 Let M = span(ψ(x1), . . . ,ψ(xn)). [the “span of the data”]
3 Let w = ProjMw∗. So ∃α s.t. w =

∑n
i=1αiψ(xi ).

4 Then w⊥ := w∗−w is orthogonal to M.
5 Projections decrease norms: ‖w‖6 ‖w∗‖.
6 Since R is nondecreasing, R(‖w‖)6 R(‖w∗‖).
7 By (4), 〈w∗,ψ(xi )〉=

〈
w +w⊥,ψ(xi )

〉
= 〈w ,ψ(xi )〉.

8 L(〈w∗,ψ(x1)〉 , . . . ,〈w∗,ψ(xn)〉) = L(〈w ,ψ(x1)〉 , . . . ,〈w ,ψ(xn)〉)
9 J(w)6 J(w∗).
10 Therefore w =

∑n
i=1αiψ(xi ) is also a minimizer.

Q.E.D.
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Using Representer Theorem to Kernelize
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Kernelized Predictions

Consider w =
∑n

i=1αiψ(xi ). (As representer theorem implies.)
How do we make predictions for a given x ∈ X?

f (x) = 〈w ,ψ(x)〉 =

〈
n∑

i=1

αiψ(xi ) ,ψ(x)

〉

=

n∑
i=1

αi 〈ψ(xi ),ψ(x)〉

=

n∑
i=1

αik(xi ,x)

Note: f (x) is a linear combination of k(x1,x), . . . ,k(xn,x), all considered as functions of x .
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Kernelized Regularization

Consider w =
∑n

i=1αiψ(xi ).
What does R(‖w‖) look like?

‖w‖2 = 〈w ,w〉

=

〈
n∑

i=1

αiψ(xi ) ,
n∑

j=1

αjψ(xj)

〉

=

n∑
i ,j=1

αiαj 〈ψ(xi ),ψ(xj)〉

=

n∑
i ,j=1

αiαjk(xi ,xj)

(You should recognize the last expression as a quadratic form.)
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The Kernel Matrix (a.k.a. Gram Matrix)

Definition
The kernel matrix or Gram matrix for a kernel k on a set {x1, . . . ,xn} is

K =
(
k(xi ,xj)

)
i ,j

=

k(x1,x1) · · · k(x1,xn)
...

. . . · · ·
k(xn,x1) · · · k(xn,xn)

 ∈ Rn×n.
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Kernelized Regularization: Matrix Form

Consider w =
∑n

i=1αiψ(xi ).
What does R(‖w‖) look like?

‖w‖2 =

n∑
i ,j=1

αiαjk(xi ,xj)

= αTKα

So R(‖w‖) = R
(√
αTKα

)
.
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Kernelized Predictions

Write fα(x) =
∑n

i=1αik(x ,xi ). (Switched from k(xi ,x) by symmetry of inner product.)
Predictions on the training points have a particularly simple form:fα(x1)

...
fα(xn)

 =

α1k(x1,x1)+ · · ·+αnk(x1,xn)
...

α1k(xn,x1)+ · · ·+αnk(xn,xn)


=

k(x1,x1) · · · k(x1,xn)
...

. . . · · ·
k(xn,x1) · · · k(xn,xn)


α1

...
αn


= Kα
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Kernelized Objective

Substituting

w =

n∑
i=1

αiψ(xi )

into generalized objective, we get

min
α∈Rn

R
(√
αTKα

)
+L(Kα) .

No direct access to ψ(xi ).
All references are via kernel matrix K .
This is the kernelized objective function.
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Kernelized SVM

The SVM objective:

min
w∈H

1
2
||w ||2+

c

n

n∑
i=1

(1− yi [〈w ,ψ(xi )〉])+ .

Kernelizing yields

min
α∈Rn

1
2
αTKα+

c

n

n∑
i=1

(1− yi (Kα)i )+
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Kernelized Ridge Regression

Ridge Regression:

min
w∈Rd

1
n

n∑
i=1

(
wT xi − yi

)2
+λ‖w‖2

Featurized Ridge Regression

min
w∈H

1
n

n∑
i=1

(〈w ,ψ(xi )〉− yi )
2+λ‖w‖2

Kernelized Ridge Regression

min
α∈Rn

1
n
‖Kα− y‖2+λαTKα,

where y = (y1, . . . ,yn)
T .
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Prediction Functions with RBF Kernel
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Radial Basis Function (RBF) / Gaussian Kernel

Input space X= Rd

k(w ,x) = exp

(
−
‖w − x‖2

2σ2

)
,

where σ2 is known as the bandwidth parameter.
Does it act like a similarity score?
Why “radial”?
Have we departed from our “inner product of feature vector” recipe?

Yes and no: corresponds to an infinite dimensional feature vector

Probably the most common nonlinear kernel.
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RBF Basis

Input space X= R
Output space: Y= R

RBF kernel k(w ,x) = exp
(
−(w − x)2

)
.

Suppose we have 6 training examples: xi ∈ {−6,−4,−3,0,2,4}.
If representer theorem applies, then

f (x) =
6∑

i=1

αik(xi ,x).

f is a linear combination of 6 basis functions of form k(xi , ·):

David S. Rosenberg (Bloomberg ML EDU) October 26, 2017 54 / 70



RBF Predictions

Basis functions

Predictions of the form f (x) =
∑6

i=1αik(xi ,x):

When kernelizing with RBF kernel, prediction functions always look this way.
(Whether we get w from SVM, ridge regression, etc...)
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RBF Feature Space: The Sequence Space `2

To work with infinite dimensional feature vectors, we need a space with certain properties.
an inner product
a norm related to the inner product
projection theorem: x = x⊥+ x‖ where x‖ ∈ S = span(w1, . . . ,wn) and 〈x⊥,s〉= 0 ∀s ∈ S .

Basically, we need a Hilbert space.

Definition

`2 is the space of all real-valued sequences: (x0,x1,x2,x3, . . .) with
∑∞

i=0 x
2
i <∞.

Theorem
With the the inner product 〈x ,x ′〉=

∑∞
i=0 xix

′
i , `2 is a Hilbert space.
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The Infinite Dimensional Feature Vector for RBF

Consider RBF kernel (1-dim): k(x ,x ′) = exp
(
−(x − x ′)2 /2

)
We claim that ψ : R→ `2 defined by

[ψ(x)]n =
1√
n!
e−x2/2xn

gives the “infinite-dimensional feature vector” corresponding to RBF kernel.
Is this mapping even well-defined? Is ψ(x) even an element of `2?
Yes: ∞∑

n=0

1
n!
e−x2

x2n = e−x2
∞∑
n=0

(
x2
)n

n!
= 1<∞

.
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The Infinite Dimensional Feature Vector for RBF

Does feature vector [ψ(x)]n =
1√
n!
e−x2/2xn actually correspond to the RBF kernel?

Yes! Proof:

〈
ψ(x),ψ(x ′)

〉
=

∞∑
n=0

1
n!
e−(x

2+(x ′)2)/2xn
(
x ′
)n

= e−(x
2+(x ′)2)/2

∞∑
n=0

(xx ′)n

n!

= exp
(
−
[
x2+

(
x ′
)2]
/2
)
exp
(
xx ′
)

= exp
(
−
[
(x − x ′)2/2

])
QED
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When is k(x ,x ′) a kernel function? (Mercer’s Theorem)
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How to Get Kernels?

1 Explicitly construct ψ(x) : X→ Rd and define k(x ,x ′) =ψ(x)Tψ(x ′).
2 Directly define the kernel function k(x ,x ′), and verify it corresponds to 〈ψ(x),ψ(x ′)〉 for

some ψ.

There are many theorems to help us with the second approach
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Positive Semidefinite Matrices

Definition

A real, symmetric matrix M ∈ Rn×n is positive semidefinite (psd) if for any x ∈ Rn,

xTMx > 0.

Theorem
The following conditions are each necessary and sufficient for M to be positive semidefinite:

M has a “square root”, i.e. there exists R s.t. M = RTR .
All eigenvalues of M are greater than or equal to 0.
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Positive Semidefinite Function

Definition
A symmetric kernel function k : X×X→ R is positive semidefinite (psd) if for any finite set
{x1, . . . ,xn} ∈ X, the kernel matrix on this set

K =
(
k(xi ,xj)

)
i ,j

=

k(x1,x1) · · · k(x1,xn)
...

. . . · · ·
k(xn,x1) · · · k(xn,xn)


is a positive semidefinite matrix.
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Mercer’s Theorem

Theorem
A symmetric function k(x ,x ′) can be expressed as an inner product

k(x ,x ′) =
〈
ψ(x),ψ(x ′)

〉
for some ψ if and only if k(x ,x ′) is positive semidefinite.
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Generating New Kernels from Old

Suppose k ,k1,k2 : X×X→ R are psd kernels. Then so are the following:

knew(x ,x ′) = k1(x ,x
′)+k2(x ,x

′)

knew(x ,x ′) = αk(x ,x ′)

knew(x ,x ′) = f (x)f (x ′) for any function f (·)
knew(x ,x ′) = k1(x ,x

′)k2(x ,x
′)

See Appendix for details.
Lots more theorems to help you construct new kernels from old...
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Details on New Kernels from Old
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Additive Closure

Suppose k1 and k2 are psd kernels with feature maps φ1 and φ2, respectively.
Then

k1(x ,x
′)+k2(x ,x

′)

is a psd kernel.
Proof: Concatenate the feature vectors to get

φ(x) = (φ1(x),φ2(x)) .

Then φ is a feature map for k1+k2.
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Closure under Positive Scaling

Suppose k is a psd kernel with feature maps φ.
Then for any α > 0,

αk

is a psd kernel.
Proof: Note that

φ(x) =
√
αφ(x)

is a feature map for αk .
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Scalar Function Gives a Kernel

For any function f (x),
k(x ,x ′) = f (x)f (x ′)

is a kernel.
Proof: Let f (x) be the feature mapping. (It maps into a 1-dimensional feature space.)〈

f (x), f (x ′)
〉
= f (x)f (x ′) = k(x ,x ′).
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Closure under Hadamard Products

Suppose k1 and k2 are psd kernels with feature maps φ1 and φ2, respectively.
Then

k1(x ,x
′)k2(x ,x

′)

is a psd kernel.
Proof: Take the outer product of the feature vectors:

φ(x) = φ1(x) [φ2(x)]
T .

Note that φ(x) is a matrix.
Continued...
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Closure under Hadamard Products

Then 〈
φ(x),φ(x ′)

〉
=
∑
i ,j

φ(x)φ(x ′)

=
∑
i ,j

[
φ1(x) [φ2(x)]

T
]
ij

[
φ1(x

′)
[
φ2(x

′)
]T ]

ij

=
∑
i ,j

[φ1(x)]i [φ2(x)]j
[
φ1(x

′)
]
i

[
φ2(x

′)
]
j

=

(∑
i

[φ1(x)]i
[
φ1(x

′)
]
i

)∑
j

[φ2(x)]j
[
φ2(x

′)
]
j


= k1(x ,x

′)k2(x ,x
′)
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