Kernel Methods

David S. Rosenberg

Bloomberg ML EDU

October 26, 2017

Setup and Motivation

The Input Space ${\mathcal X}$

- \bullet Our general learning theory setup: no assumptions about ${\mathcal X}$
- But $\mathcal{X} = \mathbf{R}^d$ for the specific methods we've developed:
 - Ridge regression
 - Lasso regression
 - Support Vector Machines
- Our hypothesis space for these was all affine functions on \mathbf{R}^d :

$$\mathcal{H} = \left\{ x \mapsto w^T x + b \mid w \in \mathbf{R}^d, b \in \mathbf{R} \right\}.$$

• What if we want to do prediction on inputs not natively in \mathbf{R}^d ?

Definition

Mapping an input from \mathcal{X} to a vector in \mathbf{R}^d is called **feature extraction** or **featurization**.

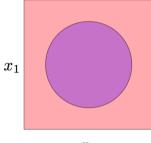
Raw Input Feature Vector $\mathcal{X} \xrightarrow{x}$ Feature Extraction $\phi(x)$ $\mathcal{X} \xrightarrow{x}$ \mathcal{R}^d

Linear Models with Explicit Feature Map

- Input space: \mathcal{X} (no assumptions)
- Introduce feature map $\psi: \mathcal{X} \to \mathbf{R}^d$
- The feature map maps into the feature space R^d .
- Hypothesis space of affine functions on feature space:

$$\mathcal{H} = \left\{ x \mapsto w^{T} \psi(x) + b \mid w \in \mathbf{R}^{d}, b \in \mathbf{R} \right\}.$$

Geometric Example: Two class problem, nonlinear boundary



 x_2

- With linear feature map $\phi(x) = (x_1, x_2)$ and linear models, can't separate regions
- With appropriate nonlinearity $\phi(x) = (x_1, x_2, x_1^2 + x_2^2)$, piece of cake.
- Video: http://youtu.be/3liCbRZPrZA

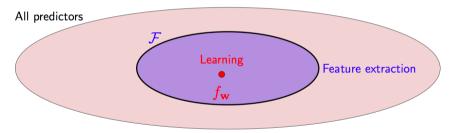
David S. Rosenberg (Bloomberg ML EDU)

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Expressivity of Hypothesis Space

• Consider a linear hypothesis space with a feature map $\phi: \mathfrak{X} \to \mathbf{R}^d$:

$$\mathcal{F} = \left\{ f(x) = w^T \varphi(x) \right\}$$



Question: does \mathcal{F} contain a good predictor?

We can grow the linear hypothesis space \mathcal{F} by adding more features.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

David S. Rosenberg (Bloomberg ML EDU)

Linear Models Need Big Feature Spaces

• To get expressive hypothesis spaces using linear models,

- need high-dimensional feature spaces
- Suppose we start with $x = (1, x_1, \dots, x_d) \in \mathbf{R}^{d+1} = \mathfrak{X}$.
- We want to add all monomials of degree M: $x_1^{p_1} \cdots x_d^{p_d}$, with $p_1 + \cdots + p_d = M$.
- How many features will we end up with?
- $\binom{M+d-1}{M}$ ("flower shop problem" from combinatorics)
- For d = 40 and M = 8, we get 314457495 features.
- That will make some extremely large matrices...

Very large feature spaces have two problems:

- Overfitting
- Memory and computational costs
- Overfitting we handle with regularization.
- "Kernel methods" can (sometimes) help with memory and computational costs.

Kernel Methods: Motivation

Review: Linear SVM and Dual

• The [featurized] SVM prediction function is the solution to

$$\min_{w \in \mathbf{R}^{d}, b \in \mathbf{R}} \frac{1}{2} ||w||^{2} + \frac{c}{n} \sum_{i=1}^{n} \left(1 - y_{i} \left[w^{T} \psi(x_{i}) + b \right] \right)_{+}.$$

• Found it is equivalent to solve the dual problem to get α^* :

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \psi(x_{j})^{T} \psi(x_{i})$$

s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \quad i = 1, \dots, n.$$

• Notice: $\psi(x)$'s only show up as inner products with other x's.

Some Methods Can Be "Kernelized"

Definition

A method is **kernelized** if inputs only appear inside inner products: $\langle \psi(x), \psi(x') \rangle$ for $x, x' \in \mathfrak{X}$.

• The kernel function corresponding to ψ and inner product $\langle\cdot,\cdot\rangle$ is

 $k(x,x') = \left\langle \psi(x), \psi(x') \right\rangle.$

- Why introduce this new notation k(x, x')?
- Turns out, we can often evaluate k(x, x') directly,
 - without explicitly computing $\psi(x)$ and $\psi(x')$.
- For large feature spaces, can be much faster.

Kernel Evaluation Can Be Fast

Example

Quadratic feature map for $x = (x_1, \ldots, x_d) \in \mathbf{R}^d$.

$$\phi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_ix_j, \dots, \sqrt{2}x_{d-1}x_d)^T$$

has dimension $O(d^2)$, but for any $x, x' \in \mathbf{R}^d$

$$k(x,x') = \langle \phi(x), \phi(x') \rangle = \langle x, x' \rangle + \langle x, x' \rangle^{2}$$

- Naively explicit computation of k(x, x'): $O(d^2)$
- Implicit computation of k(x, x'): O(d)

- Often useful to think of the kernel function as a similarity score.
- But this is not a mathematically precise statement.
- There are many ways to design a similarity score.
 - We will use Mercer kernels, which correspond to inner products in some feature space.
 - Has many mathematical benefits.

What are the Benefits of Kernelization?

- **(**) Computational (e.g. when feature space dimension d larger than sample size n).
- Access to infinite-dimensional feature spaces.
- O Allows thinking in terms of "similarity" rather than features.

Example: SVM

SVM Dual

• Recall the SVM dual optimization problem for training set $(x_1, y_1), \ldots, (x_n, y_n)$:

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$

s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \quad i = 1, \dots, n.$$

• Can replace $x_i^T x_i$ by an arbitrary kernel $k(x_j, x_i)$.

• What kernel are we currently using?

Linear Kernel

- Input space: $\mathfrak{X} = \mathbf{R}^d$
- Feature space: $\mathcal{H}=\mathbf{R}^d,$ with standard inner product
- Feature map

 $\psi(x) = x$

• Kernel:

 $k(x, x') = x^T x'$

The Kernel Matrix (or the Gram Matrix)

Definition

For points of $x_1, \ldots, x_n \in \mathcal{X}$ and an inner product $\langle \cdot, \cdot \rangle$ on \mathcal{X} , the **kernel matrix** or the **Gram matrix** is defined as

$$\mathcal{K} = \left(\langle x_i, x_j \rangle \right)_{i,j} = \begin{pmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\ \vdots & \ddots & \cdots \\ \langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle \end{pmatrix}$$

Then for the standard Euclidean inner product $\langle x_i, x_j \rangle = x_i^T x_j$, we have

 $K = XX^T$

SVM Dual with Kernel Matrix

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K_{ji}$$

s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \quad i = 1, \dots, n.$$

- Once our algorithm works with kernel matrices, we can change kernel just by changing the matrix.
- Size of matrix: $n \times n$, where *n* is the number of data points.
- Recall with ridge regression, we worked with $X^T X$, which is $d \times d$, where d is feature space dimension.

David S. Rosenberg (Bloomberg ML EDU)

Some Nonlinear Kernels

Quadratic Kernel in \mathbf{R}^d

- Input space $\mathcal{X} = \mathbf{R}^d$
- Feature space: $\mathcal{H} = \mathbf{R}^D$, where $D = d + \binom{d}{2} \approx d^2/2$.
- Feature map:

$$\phi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_ix_j, \dots, \sqrt{2}x_{d-1}x_d)^T$$

• Then for $\forall x, x' \in \mathbf{R}^d$

$$k(x,x') = \langle \phi(x), \phi(x') \rangle$$
$$= \langle x, x' \rangle + \langle x, x' \rangle^{2}$$

- Computation for inner product with explicit mapping: $O(d^2)$
- Computation for implicit kernel calculation: O(d).

David S. Rosenberg (Bloomberg ML EDU)

Based on Guillaume Obozinski's Statistical Machine Learning course at Louvain, Feb 2014.

- Input space $\mathcal{X} = \mathbf{R}^d$
- Kernel function:

$$k(x, x') = \left(1 + \langle x, x' \rangle\right)^{M}$$

- Corresponds to a feature map with all monomials up to degree M.
- For any M, computing the kernel has same computational cost
- Cost of explicit inner product computation grows rapidly in *M*.

Radial Basis Function (RBF) / Gaussian Kernel

• Input space
$$\mathfrak{X} = \mathbf{R}^d$$
. $\forall x, x' \in \mathbf{R}^d$,

$$k(w, x) = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right),$$

where σ^2 is known as the bandwidth parameter.

- Does it act like a similarity score?
- Why "radial"?
- Have we departed from our "inner product of feature vector" recipe?
 - Yes and no: corresponds to an infinite dimensional feature vector
- Probably the most common nonlinear kernel.

Kernel Trick: Overview

- Given a kernelized ML algorithm.
- ② Can swap out the inner product for a new kernel function.
- New kernel may correspond to a high dimensional feature space.
- Once kernel matrix is computed, computational cost depends on number of data points, rather than the dimension of feature space.

Swapping out a linear kernel for a new kernel is called the kernel trick.

Inner Product Spaces and Projections (Hilbert Spaces)

Inner Product Space (or "Pre-Hilbert" Spaces)

An inner product space (over reals) is a vector space ${\mathcal V}$ and an inner product, which is a mapping

$$\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbf{R}$$

that has the following properties $\forall x, y, z \in \mathcal{V}$ and $a, b \in \mathbf{R}$:

• Symmetry: $\langle x, y \rangle = \langle y, x \rangle$

• Linearity:
$$\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$$

• Positive-definiteness: $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0 \iff x = 0$.

Norm from Inner Product

For an inner product space, we define a norm as

$$\|x\| = \sqrt{\langle x, x \rangle}.$$

Example

 \mathbf{R}^d with standard Euclidean inner product is an inner product space:

$$\langle x, y \rangle := x^T y \qquad \forall x, y \in \mathbf{R}^d.$$

Norm is

$$\|x\| = \sqrt{x^T x}.$$

David S. Rosenberg (Bloomberg ML EDU)

What norms can we get from an inner product?

Theorem (Parallelogram Law)

A norm $\|\cdot\|$ can be written in terms of an inner product on \mathcal{V} iff $\forall x, x' \in \mathcal{V}$

$$2\|x\|^2 + 2\|x'\|^2 = \|x + x'\|^2 + \|x - x'\|^2,$$

and if it can, the inner product is given by the polarization identity

$$\langle x, x' \rangle = \frac{\|x\|^2 + \|x'\|^2 - \|x - x'\|^2}{2}.$$

Example

 ℓ_1 norm on R^d is NOT generated by an inner product. [Exercise]

Is ℓ_2 norm on \mathbf{R}^d generated by an inner product?

Pythagorean Theorem

Definition

Two vectors are **orthogonal** if $\langle x, x' \rangle = 0$. We denote this by $x \perp x'$.

Definition

x is orthogonal to a set S, i.e. $x \perp S$, if $x \perp s$ for all $x \in S$.

Theorem (Pythagorean Theorem)

If
$$x \perp x'$$
, then $||x + x'||^2 = ||x||^2 + ||x'||^2$.

Proof.

We have

$$||x + x'||^2 = \langle x + x', x + x' \rangle$$

= $\langle x, x \rangle + \langle x, x' \rangle + \langle x', x \rangle + \langle x', x' \rangle$
= $||x||^2 + ||x'||^2$

Projection onto a Plane (Rough Definition)

- Choose some $x \in \mathcal{V}$.
- Let M be a subspace of inner product space \mathcal{V} .
- Then m_0 is the projection of x onto M,
 - if $m_0 \in M$ and is the closest point to x in M.
- In math: For all $m \in M$,

$$\|x-m_0\|\leqslant \|x-m\|.$$

Hilbert Space

- Projections exist for all finite-dimensional inner product spaces.
- We want to allow infinite-dimensional spaces.
- Need an extra condition called completeness.
- A space is **complete** if all Cauchy sequences in the space converge.

Definition

A Hilbert space is a complete inner product space.

Example

Any finite dimensional inner product space is a Hilbert space.

The Projection Theorem

Theorem (Classical Projection Theorem)

- H a Hilbert space
- M a closed subspace of $\mathcal H$ (picture a hyperplane through the origin)
- For any $x \in \mathcal{H}$, there exists a unique $m_0 \in M$ for which

$$\|x-m_0\|\leqslant \|x-m\|\;\forall m\in M.$$

- This m_0 is called the **[orthogonal] projection of** \times **onto** M.
- Furthermore, $m_0 \in M$ is the projection of x onto M iff

$$x-m_0\perp M$$
.

Projection Reduces Norm

Theorem

Let M be a closed subspace of \mathcal{H} . For any $x \in \mathcal{H}$, let $m_0 = Proj_M x$ be the projection of x onto M. Then

 $\|m_0\| \leqslant \|x\|$,

with equality only when $m_0 = x$.

Proof.

$$||x||^{2} = ||m_{0} + (x - m_{0})||^{2} \text{ (note: } x - m_{0} \perp m_{0} \text{ by Projection theorem})$$

= $||m_{0}||^{2} + ||x - m_{0}||^{2}$ by Pythagorean theorem
 $|m_{0}||^{2} = ||x||^{2} - ||x - m_{0}||^{2}$

Then $||x - m_0||^2 \ge 0$ implies $||m_0||^2 \le ||x||^2$. If $||x - m_0||^2 = 0$, then $x = m_0$, by definition of norm.

Representer Theorem

Generalize from SVM Objective

• Featurized SVM objective:

$$\min_{w \in \mathbf{R}^{d}} \frac{1}{2} ||w||^{2} + \frac{c}{n} \sum_{i=1}^{n} \max(0, 1 - y_{i}[\langle w, \psi(x_{i}) \rangle]).$$

• Generalized objective:

$$\min_{w\in\mathcal{H}} R\left(\|w\|\right) + L\left(\langle w, \psi(x_1)\rangle, \ldots, \langle w, \psi(x_n)\rangle\right),$$

where

- $R: \mathbb{R}^{\geq 0} \to \mathbb{R}$ is nondecreasing (Regularization term)
- and $L: \mathbf{R}^n \to \mathbf{R}$ is arbitrary. (Loss term)

General Objective Function for Linear Hypothesis Space (Details)

• Generalized objective:

$$\min_{w\in\mathcal{H}}R\left(\|w\|\right)+L\left(\langle w,\psi(x_1)\rangle,\ldots,\langle w,\psi(x_n)\rangle\right),$$

where

- $w, \psi(x_1), \ldots, \psi(x_n) \in \mathcal{H}$ for some Hilbert space \mathcal{H} . (We typically have $\mathcal{H} = \mathbf{R}^d$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathcal{H} . (i.e. $\|w\| = \sqrt{\langle w, w \rangle}$)
- $R: [0,\infty) \rightarrow \mathbf{R}$ is nondecreasing (Regularization term), and
- $L: \mathbf{R}^n \to \mathbf{R}$ is arbitrary (Loss term).

General Objective Function for Linear Hypothesis Space (Details)

• Generalized objective:

$$\min_{w\in\mathcal{H}} R(\|w\|) + L(\langle w, \psi(x_1)\rangle, \ldots, \langle w, \psi(x_n)\rangle),$$

- What's "linear"?
- The prediction/score function $x \mapsto \langle w, \psi(x_i) \rangle$ is linear in what?
 - in parameter vector w, and
 - in the feature vector $\psi(x_i)$.
- Why? [Real-valued] inner products are linear in each argument.
- The important part is the linearity in the parameter w.
- When we discuss neural networks, we'll mention a "linear network" in which prediction functions are linear in the feature vector $\psi(x)$, but nonlinear in the parameter vector w. In other words, we have something like

 $\min_{w\in\mathcal{H}} R\left(\|w\|\right) + L\left(\langle f(w), \psi(x_1)\rangle, \ldots, \langle f(w), \psi(x_n)\rangle\right),$

for some (known) nonlinear function f. Our discussion will not apply to this situation.

General Objective Function for Linear Hypothesis Space (Details)

• Generalized objective:

$$\min_{w\in\mathcal{H}} R\left(\|w\|\right) + L\left(\langle w, \psi(x_1)\rangle, \ldots, \langle w, \psi(x_n)\rangle\right),$$

- Ridge regression and SVM are of this form.
- What if we penalize with $\lambda ||w||_2$ instead of $\lambda ||w||_2^2$? Yes!.
- What if we use lasso regression? No! ℓ_1 norm does not correspond to an inner product.

The Representer Theorem

Theorem (Representer Theorem)

Let

$$J(w) = R(||w||) + L(\langle w, \psi(x_1) \rangle, \dots, \langle w, \psi(x_n) \rangle),$$

where

- $w, \psi(x_1), \ldots, \psi(x_n) \in \mathcal{H}$ for some Hilbert space \mathcal{H} . (We typically have $\mathcal{H} = \mathbf{R}^d$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathcal{H} . (i.e. $\|w\| = \sqrt{\langle w, w \rangle}$)
- $R: \mathbb{R}^{\geq 0} \to \mathbb{R}$ is nondecreasing (Regularization term), and
- $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary (Loss term).

If J(w) has a minimizer, then it has a minimizer of the form $w^* = \sum_{i=1}^{n} \alpha_i \psi(x_i)$. [If *R* is strictly increasing, then all minimizers have this form. (Proof in homework.)]

The Representer Theorem (Proof)

- Let w^* be a minimizer.
- 2 Let $M = \text{span}(\psi(x_1), \dots, \psi(x_n))$. [the "span of the data"]
- **So** Let $w = \operatorname{Proj}_{M} w^{*}$. So $\exists \alpha \text{ s.t. } w = \sum_{i=1}^{n} \alpha_{i} \psi(x_{i})$.
- Then $w^{\perp} := w^* w$ is orthogonal to M.
- **•** Projections decrease norms: $||w|| \leq ||w^*||$.
- Since *R* is nondecreasing, $R(||w||) \leq R(||w^*||)$.

 $L(\langle w^*, \psi(x_1) \rangle, \ldots, \langle w^*, \psi(x_n) \rangle) = L(\langle w, \psi(x_1) \rangle, \ldots, \langle w, \psi(x_n) \rangle)$

$$I(w) \leqslant J(w^*).$$

(2) Therefore $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$ is also a minimizer.

Q.E.D.

Using Representer Theorem to Kernelize

Kernelized Predictions

• Consider $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$. (As representer theorem implies.)

• How do we make predictions for a given $x \in \mathfrak{X}$?

$$f(x) = \langle w, \psi(x) \rangle = \left\langle \sum_{i=1}^{n} \alpha_{i} \psi(x_{i}), \psi(x) \right\rangle$$
$$= \sum_{i=1}^{n} \alpha_{i} \langle \psi(x_{i}), \psi(x) \rangle$$
$$= \sum_{i=1}^{n} \alpha_{i} k(x_{i}, x)$$

Note: f(x) is a linear combination of $k(x_1, x), \ldots, k(x_n, x)$, all considered as functions of x.

Kernelized Regularization

- Consider $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$.
- What does R(||w||) look like?

$$\|w\|^{2} = \langle w, w \rangle$$

= $\left\langle \sum_{i=1}^{n} \alpha_{i} \psi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \psi(x_{j}) \right\rangle$
= $\sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} \langle \psi(x_{i}), \psi(x_{j}) \rangle$
= $\sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} k(x_{i}, x_{j})$

(You should recognize the last expression as a quadratic form.)

The Kernel Matrix (a.k.a. Gram Matrix)

Definition

The kernel matrix or Gram matrix for a kernel k on a set $\{x_1, \ldots, x_n\}$ is

$$K = (k(x_i, x_j))_{i,j} = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \cdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix} \in \mathbf{R}^{n \times n}.$$

Kernelized Regularization: Matrix Form

- Consider $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$.
- What does R(||w||) look like?

$$\|w\|^{2} = \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} k(x_{i}, x_{j})$$
$$= \alpha^{T} K \alpha$$

• So
$$R(||w||) = R\left(\sqrt{\alpha^T K \alpha}\right).$$

Kernelized Predictions

- Write $f_{\alpha}(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i)$. (Switched from $k(x_i, x)$ by symmetry of inner product.)
- Predictions on the training points have a particularly simple form:

$$\begin{pmatrix} f_{\alpha}(x_{1}) \\ \vdots \\ f_{\alpha}(x_{n}) \end{pmatrix} = \begin{pmatrix} \alpha_{1}k(x_{1}, x_{1}) + \dots + \alpha_{n}k(x_{1}, x_{n}) \\ \vdots \\ \alpha_{1}k(x_{n}, x_{1}) + \dots + \alpha_{n}k(x_{n}, x_{n}) \end{pmatrix} \\ = \begin{pmatrix} k(x_{1}, x_{1}) & \dots & k(x_{1}, x_{n}) \\ \vdots & \ddots & \dots \\ k(x_{n}, x_{1}) & \dots & k(x_{n}, x_{n}) \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix} \\ = K\alpha$$

Kernelized Objective

Substituting

$$w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$$

into generalized objective, we get

$$\min_{\alpha\in\mathbf{R}^n}R\left(\sqrt{\alpha^{\mathsf{T}}K\alpha}\right)+L\left(K\alpha\right).$$

- No direct access to $\psi(x_i)$.
- All references are via kernel matrix K.
- This is the kernelized objective function.

• The SVM objective:

$$\min_{w \in \mathcal{H}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n (1 - y_i [\langle w, \psi(x_i) \rangle])_+.$$

• Kernelizing yields

$$\min_{\alpha \in \mathbf{R}^{n}} \frac{1}{2} \alpha^{T} K \alpha + \frac{c}{n} \sum_{i=1}^{n} \left(1 - y_{i} \left(K \alpha \right)_{i} \right)_{+}$$

Kernelized Ridge Regression

• Ridge Regression:

$$\min_{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} + \lambda ||w||^{2}$$

• Featurized Ridge Regression

$$\min_{w\in\mathcal{H}}\frac{1}{n}\sum_{i=1}^{n}\left(\langle w,\psi(x_i)\rangle-y_i\right)^2+\lambda\|w\|^2$$

• Kernelized Ridge Regression

$$\min_{\alpha\in\mathbf{R}^n}\frac{1}{n}\|\kappa\alpha-y\|^2+\lambda\alpha^T\kappa\alpha,$$

where
$$y = (y_1, ..., y_n)^T$$
.

David S. Rosenberg (Bloomberg ML EDU)

Prediction Functions with RBF Kernel

Radial Basis Function (RBF) / Gaussian Kernel

• Input space $\mathcal{X} = \mathbf{R}^d$

$$k(w, x) = \exp\left(-\frac{\|w-x\|^2}{2\sigma^2}\right),$$

where σ^2 is known as the bandwidth parameter.

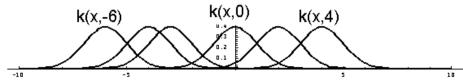
- Does it act like a similarity score?
- Why "radial"?
- Have we departed from our "inner product of feature vector" recipe?
 - Yes and no: corresponds to an infinite dimensional feature vector
- Probably the most common nonlinear kernel.

RBF Basis

- Input space $\mathcal{X} = \mathbf{R}$
- Output space: $\mathcal{Y} = \mathbf{R}$
- RBF kernel $k(w, x) = \exp\left(-(w-x)^2\right)$.
- Suppose we have 6 training examples: $x_i \in \{-6, -4, -3, 0, 2, 4\}$.
- If representer theorem applies, then

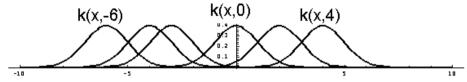
$$f(x) = \sum_{i=1}^{6} \alpha_i k(x_i, x).$$

• f is a linear combination of 6 basis functions of form $k(x_i, \cdot)$:

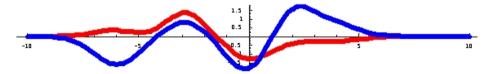


RBF Predictions

• Basis functions



• Predictions of the form $f(x) = \sum_{i=1}^{6} \alpha_i k(x_i, x)$:



- When kernelizing with RBF kernel, prediction functions always look this way.
- (Whether we get *w* from SVM, ridge regression, etc...)

RBF Feature Space: The Sequence Space ℓ_2

- To work with infinite dimensional feature vectors, we need a space with certain properties.
 - an inner product
 - a norm related to the inner product
 - projection theorem: $x = x_{\perp} + x_{\parallel}$ where $x_{\parallel} \in S = \operatorname{span}(w_1, \dots, w_n)$ and $\langle x_{\perp}, s \rangle = 0 \quad \forall s \in S$.
- Basically, we need a Hilbert space.

Definition

 ℓ_2 is the space of all real-valued sequences: $(x_0, x_1, x_2, x_3, ...)$ with $\sum_{i=0}^{\infty} x_i^2 < \infty$.

Theorem

With the inner product $\langle x, x' \rangle = \sum_{i=0}^{\infty} x_i x'_i$, ℓ_2 is a Hilbert space.

The Infinite Dimensional Feature Vector for RBF

- Consider RBF kernel (1-dim): $k(x, x') = \exp\left(-(x-x')^2/2\right)$
- \bullet We claim that $\psi: \textbf{R} \to \ell_2$ defined by

$$\left[\psi(x)\right]_n = \frac{1}{\sqrt{n!}} e^{-x^2/2} x^n$$

gives the "infinite-dimensional feature vector" corresponding to RBF kernel.

- Is this mapping even well-defined? Is $\psi(x)$ even an element of ℓ_2 ?
- Yes:

.

$$\sum_{n=0}^{\infty} \frac{1}{n!} e^{-x^2} x^{2n} = e^{-x^2} \sum_{n=0}^{\infty} \frac{(x^2)^n}{n!} = 1 < \infty$$

The Infinite Dimensional Feature Vector for RBF

Does feature vector [ψ(x)]_n = 1/√n! e^{-x²/2}xⁿ actually correspond to the RBF kernel?
 Yes! Proof:

$$\begin{aligned} \left\langle \Psi(x), \Psi(x') \right\rangle &= \sum_{n=0}^{\infty} \frac{1}{n!} e^{-\left(x^2 + (x')^2\right)/2} x^n \left(x'\right)^n \\ &= e^{-\left(x^2 + (x')^2\right)/2} \sum_{n=0}^{\infty} \frac{(xx')^n}{n!} \\ &= \exp\left(-\left[x^2 + (x')^2\right]/2\right) \exp\left(xx'\right) \\ &= \exp\left(-\left[(x - x')^2/2\right]\right) \end{aligned}$$

QED

When is k(x, x') a kernel function? (Mercer's Theorem)

- **(**) Explicitly construct $\psi(x) : \mathcal{X} \to \mathbf{R}^d$ and define $k(x, x') = \psi(x)^T \psi(x')$.
- Oirectly define the kernel function k(x, x'), and verify it corresponds to (ψ(x), ψ(x')) for some ψ.

There are many theorems to help us with the second approach

Definition

A real, symmetric matrix $M \in \mathbb{R}^{n \times n}$ is positive semidefinite (psd) if for any $x \in \mathbb{R}^n$,

 $x^T M x \ge 0.$

Theorem

The following conditions are each necessary and sufficient for M to be positive semidefinite:

- *M* has a "square root", i.e. there exists R s.t. $M = R^T R$.
- All eigenvalues of M are greater than or equal to 0.

Definition

A symmetric kernel function $k: \mathcal{X} \times \mathcal{X} \to \mathbf{R}$ is **positive semidefinite (psd)** if for any finite set $\{x_1, \ldots, x_n\} \in \mathcal{X}$, the kernel matrix on this set

$$\mathcal{K} = \left(k(x_i, x_j)\right)_{i,j} = \begin{pmatrix}k(x_1, x_1) & \cdots & k(x_1, x_n)\\ \vdots & \ddots & \cdots\\ k(x_n, x_1) & \cdots & k(x_n, x_n)\end{pmatrix}$$

is a positive semidefinite matrix.

Theorem

A symmetric function k(x, x') can be expressed as an inner product

$$k(x,x') = \langle \psi(x), \psi(x') \rangle$$

for some ψ if and only if k(x, x') is **positive semidefinite**.

Generating New Kernels from Old

• Suppose $k, k_1, k_2 : \mathcal{X} \times \mathcal{X} \to \mathbf{R}$ are psd kernels. Then so are the following:

$$k_{\text{new}}(x, x') = k_1(x, x') + k_2(x, x')$$

$$k_{\text{new}}(x, x') = \alpha k(x, x')$$

$$k_{\text{new}}(x, x') = f(x)f(x') \text{ for any function } f(\cdot)$$

$$k_{\text{new}}(x, x') = k_1(x, x')k_2(x, x')$$

- See Appendix for details.
- Lots more theorems to help you construct new kernels from old...

Details on New Kernels from Old

Additive Closure

Suppose k₁ and k₂ are psd kernels with feature maps φ₁ and φ₂, respectively.
Then

$$k_1(x, x') + k_2(x, x')$$

is a psd kernel.

• Proof: Concatenate the feature vectors to get

 $\phi(x) = (\phi_1(x), \phi_2(x)).$

Then ϕ is a feature map for $k_1 + k_2$.

- Suppose k is a psd kernel with feature maps ϕ .
- Then for any $\alpha > 0$,

αk

is a psd kernel.

• Proof: Note that

$$\phi(x) = \sqrt{\alpha}\phi(x)$$

is a feature map for αk .

Scalar Function Gives a Kernel

• For any function f(x),

$$k(x,x') = f(x)f(x')$$

is a kernel.

• Proof: Let f(x) be the feature mapping. (It maps into a 1-dimensional feature space.)

$$\langle f(x), f(x') \rangle = f(x)f(x') = k(x, x').$$

Closure under Hadamard Products

• Suppose k_1 and k_2 are psd kernels with feature maps ϕ_1 and ϕ_2 , respectively.

• Then

$$k_1(x,x')k_2(x,x')$$

is a psd kernel.

• Proof: Take the outer product of the feature vectors:

 $\phi(x) = \phi_1(x) \left[\phi_2(x)\right]^T.$

Note that $\phi(x)$ is a matrix.

• Continued...

Closure under Hadamard Products

Then

$$\begin{split} \left\langle \Phi(x), \Phi(x') \right\rangle &= \sum_{i,j} \Phi(x) \Phi(x') \\ &= \sum_{i,j} \left[\Phi_1(x) \left[\Phi_2(x) \right]^T \right]_{ij} \left[\Phi_1(x') \left[\Phi_2(x') \right]^T \right]_{ij} \\ &= \sum_{i,j} \left[\Phi_1(x) \right]_i \left[\Phi_2(x) \right]_j \left[\Phi_1(x') \right]_i \left[\Phi_2(x') \right]_j \\ &= \left(\sum_i \left[\Phi_1(x) \right]_i \left[\Phi_1(x') \right]_i \right) \left(\sum_j \left[\Phi_2(x) \right]_j \left[\Phi_2(x') \right]_j \right) \\ &= k_1(x, x') k_2(x, x') \end{split}$$