Kernel Methods

David S. Rosenberg

Bloomberg ML EDU
October 26, 2017

Setup and Motivation

The Input Space X

- Our general learning theory setup: no assumptions about X
- But $X=\mathrm{R}^{d}$ for the specific methods we've developed:
- Ridge regression
- Lasso regression
- Support Vector Machines
- Our hypothesis space for these was all affine functions on R^{d} :

$$
\mathcal{H}=\left\{x \mapsto w^{\top} x+b \mid w \in \mathbf{R}^{d}, b \in \mathbf{R}\right\} .
$$

- What if we want to do prediction on inputs not natively in \mathbf{R}^{d} ?

Feature Extraction

Definition

Mapping an input from X to a vector in R^{d} is called feature extraction or featurization.

Raw Input

Linear Models with Explicit Feature Map

- Input space: X (no assumptions)
- Introduce feature map $\psi: X \rightarrow \mathbf{R}^{d}$
- The feature map maps into the feature space \mathbf{R}^{d}.
- Hypothesis space of affine functions on feature space:

$$
\mathcal{H}=\left\{x \mapsto w^{\top} \psi(x)+b \mid w \in \mathbf{R}^{d}, b \in \mathbf{R}\right\} .
$$

Geometric Example: Two class problem, nonlinear boundary

- With linear feature map $\phi(x)=\left(x_{1}, x_{2}\right)$ and linear models, can't separate regions
- With appropriate nonlinearity $\phi(x)=\left(x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right)$, piece of cake.
- Video: http://youtu.be/3liCbRZPrZA

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Expressivity of Hypothesis Space

- Consider a linear hypothesis space with a feature map $\phi: X \rightarrow \mathbf{R}^{d}$:

$$
\mathcal{F}=\left\{f(x)=w^{\top} \phi(x)\right\}
$$

Question: does \mathcal{F} contain a good predictor?
We can grow the linear hypothesis space \mathcal{F} by adding more features.
From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Linear Models Need Big Feature Spaces

- To get expressive hypothesis spaces using linear models,
- need high-dimensional feature spaces
- Suppose we start with $x=\left(1, x_{1}, \ldots, x_{d}\right) \in \mathbf{R}^{d+1}=X$.
- We want to add all monomials of degree $M: x_{1}^{p_{1}} \cdots x_{d}^{p_{d}}$, with $p_{1}+\cdots+p_{d}=M$.
- How many features will we end up with?
- $\binom{M+d-1}{M}$ ("flower shop problem" from combinatorics)
- For $d=40$ and $M=8$, we get 314457495 features.
- That will make some extremely large matrices...

Big Feature Spaces

Very large feature spaces have two problems:
(1) Overfitting
(2) Memory and computational costs

- Overfitting we handle with regularization.
- "Kernel methods" can (sometimes) help with memory and computational costs.

Kernel Methods: Motivation

Review: Linear SVM and Dual

- The [featurized] SVM prediction function is the solution to

$$
\min _{w \in \mathbf{R}^{d}, b \in \mathbf{R}} \frac{1}{2}\|w\|^{2}+\frac{c}{n} \sum_{i=1}^{n}\left(1-y_{i}\left[w^{T} \psi\left(x_{i}\right)+b\right]\right)_{+} .
$$

- Found it is equivalent to solve the dual problem to get α^{*} :

$$
\begin{array}{ll}
\sup _{\alpha} & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \psi\left(x_{j}\right)^{T} \psi\left(x_{i}\right) \\
\text { s.t. } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
& \alpha_{i} \in\left[0, \frac{c}{n}\right] i=1, \ldots, n .
\end{array}
$$

- Notice: $\psi(x)$'s only show up as inner products with other x 's.

Some Methods Can Be "Kernelized"

Definition

A method is kernelized if inputs only appear inside inner products: $\left\langle\psi(x), \psi\left(x^{\prime}\right)\right\rangle$ for $x, x^{\prime} \in \mathcal{X}$.

- The kernel function corresponding to ψ and inner product $\langle\cdot, \cdot\rangle$ is

$$
k\left(x, x^{\prime}\right)=\left\langle\psi(x), \psi\left(x^{\prime}\right)\right\rangle .
$$

- Why introduce this new notation $k\left(x, x^{\prime}\right)$?
- Turns out, we can often evaluate $k\left(x, x^{\prime}\right)$ directly,
- without explicitly computing $\psi(x)$ and $\psi\left(x^{\prime}\right)$.
- For large feature spaces, can be much faster.

Kernel Evaluation Can Be Fast

Example

Quadratic feature map for $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbf{R}^{d}$.

$$
\phi(x)=\left(x_{1}, \ldots, x_{d}, x_{1}^{2}, \ldots, x_{d}^{2}, \sqrt{2} x_{1} x_{2}, \ldots, \sqrt{2} x_{i} x_{j}, \ldots \sqrt{2} x_{d-1} x_{d}\right)^{T}
$$

has dimension $O\left(d^{2}\right)$, but for any $x, x^{\prime} \in \mathbf{R}^{d}$

$$
k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle=\left\langle x, x^{\prime}\right\rangle+\left\langle x, x^{\prime}\right\rangle^{2}
$$

- Naively explicit computation of $k\left(x, x^{\prime}\right): O\left(d^{2}\right)$
- Implicit computation of $k\left(x, x^{\prime}\right): O(d)$

Kernels as Similarity Scores

- Often useful to think of the kernel function as a similarity score.
- But this is not a mathematically precise statement.
- There are many ways to design a similarity score.
- We will use Mercer kernels, which correspond to inner products in some feature space.
- Has many mathematical benefits.

What are the Benefits of Kernelization?

(1) Computational (e.g. when feature space dimension d larger than sample size n).
(3) Access to infinite-dimensional feature spaces.

- Allows thinking in terms of "similarity" rather than features.

Example: SVM

SVM Dual

- Recall the SVM dual optimization problem for training set $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$:

$$
\begin{array}{ll}
\sup _{\alpha} & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i} \\
\text { s.t. } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
& \alpha_{i} \in\left[0, \frac{c}{n}\right] i=1, \ldots, n .
\end{array}
$$

- Can replace $x_{j}^{T} x_{i}$ by an arbitrary kernel $k\left(x_{j}, x_{i}\right)$.
- What kernel are we currently using?

Linear Kernel

- Input space: $X=\mathbf{R}^{d}$
- Feature space: $\mathcal{H}=\mathbf{R}^{d}$, with standard inner product
- Feature map

$$
\psi(x)=x
$$

- Kernel:

$$
k\left(x, x^{\prime}\right)=x^{T} x^{\prime}
$$

The Kernel Matrix (or the Gram Matrix)

Definition

For points of $x_{1}, \ldots, x_{n} \in X$ and an inner product $\langle\cdot, \cdot\rangle$ on X, the kernel matrix or the Gram matrix is defined as

$$
K=\left(\left\langle x_{i}, x_{j}\right\rangle\right)_{i, j}=\left(\begin{array}{ccc}
\left\langle x_{1}, x_{1}\right\rangle & \cdots & \left\langle x_{1}, x_{n}\right\rangle \\
\vdots & \ddots & \ldots \\
\left\langle x_{n}, x_{1}\right\rangle & \cdots & \left\langle x_{n}, x_{n}\right\rangle
\end{array}\right) .
$$

Then for the standard Euclidean inner product $\left\langle x_{i}, x_{j}\right\rangle=x_{i}^{T} x_{j}$, we have

$$
K=X X^{T}
$$

SVM Dual with Kernel Matrix

$$
\begin{array}{ll}
\sup _{\alpha} & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K_{j i} \\
\text { s.t. } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
& \alpha_{i} \in\left[0, \frac{c}{n}\right] i=1, \ldots, n .
\end{array}
$$

- Once our algorithm works with kernel matrices, we can change kernel just by changing the matrix.
- Size of matrix: $n \times n$, where n is the number of data points.
- Recall with ridge regression, we worked with $X^{T} X$, which is $d \times d$, where d is feature space dimension.

Some Nonlinear Kernels

Quadratic Kernel in \mathbf{R}^{d}

- Input space $X=\mathrm{R}^{d}$
- Feature space: $\mathcal{H}=\mathbf{R}^{D}$, where $D=d+\binom{d}{2} \approx d^{2} / 2$.
- Feature map:

$$
\phi(x)=\left(x_{1}, \ldots, x_{d}, x_{1}^{2}, \ldots, x_{d}^{2}, \sqrt{2} x_{1} x_{2}, \ldots, \sqrt{2} x_{i} x_{j}, \ldots \sqrt{2} x_{d-1} x_{d}\right)^{T}
$$

- Then for $\forall x, x^{\prime} \in \mathbf{R}^{d}$

$$
\begin{aligned}
k\left(x, x^{\prime}\right) & =\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle \\
& =\left\langle x, x^{\prime}\right\rangle+\left\langle x, x^{\prime}\right\rangle^{2}
\end{aligned}
$$

- Computation for inner product with explicit mapping: $O\left(d^{2}\right)$
- Computation for implicit kernel calculation: $O(d)$.

Polynomial Kernel in \mathbf{R}^{d}

- Input space $X=\mathrm{R}^{d}$
- Kernel function:

$$
k\left(x, x^{\prime}\right)=\left(1+\left\langle x, x^{\prime}\right\rangle\right)^{M}
$$

- Corresponds to a feature map with all monomials up to degree M.
- For any M, computing the kernel has same computational cost
- Cost of explicit inner product computation grows rapidly in M.

Radial Basis Function (RBF) / Gaussian Kernel

- Input space $X=\mathbf{R}^{d} . \forall x, x^{\prime} \in \mathbf{R}^{d}$,

$$
k(w, x)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

where σ^{2} is known as the bandwidth parameter.

- Does it act like a similarity score?
- Why "radial'?
- Have we departed from our "inner product of feature vector" recipe?
- Yes and no: corresponds to an infinite dimensional feature vector
- Probably the most common nonlinear kernel.

Kernel Trick: Overview

The "Kernel Trick"

(1) Given a kernelized ML algorithm.
(2) Can swap out the inner product for a new kernel function.
(3) New kernel may correspond to a high dimensional feature space.
(4) Once kernel matrix is computed, computational cost depends on number of data points, rather than the dimension of feature space.

Swapping out a linear kernel for a new kernel is called the kernel trick.

Inner Product Spaces and Projections (Hilbert Spaces)

Inner Product Space (or "Pre-Hilbert" Spaces)

An inner product space (over reals) is a vector space \mathcal{V} and an inner product, which is a mapping

$$
\langle\cdot, \cdot\rangle: \mathcal{V} \times \mathcal{V} \rightarrow \mathbf{R}
$$

that has the following properties $\forall x, y, z \in \mathcal{V}$ and $a, b \in \mathbf{R}$:

- Symmetry: $\langle x, y\rangle=\langle y, x\rangle$
- Linearity: $\langle a x+b y, z\rangle=a\langle x, z\rangle+b\langle y, z\rangle$
- Positive-definiteness: $\langle x, x\rangle \geqslant 0$ and $\langle x, x\rangle=0 \Longleftrightarrow x=0$.

Norm from Inner Product

For an inner product space, we define a norm as

$$
\|x\|=\sqrt{\langle x, x\rangle}
$$

Example

\mathbf{R}^{d} with standard Euclidean inner product is an inner product space:

$$
\langle x, y\rangle:=x^{T} y \quad \forall x, y \in \mathbf{R}^{d}
$$

Norm is

$$
\|x\|=\sqrt{x^{T} x}
$$

What norms can we get from an inner product?

Theorem (Parallelogram Law)
A norm \|•\| can be written in terms of an inner product on \mathcal{V} iff $\forall x, x^{\prime} \in \mathcal{V}$

$$
2\|x\|^{2}+2\left\|x^{\prime}\right\|^{2}=\left\|x+x^{\prime}\right\|^{2}+\left\|x-x^{\prime}\right\|^{2},
$$

and if it can, the inner product is given by the polarization identity

$$
\left\langle x, x^{\prime}\right\rangle=\frac{\|x\|^{2}+\left\|x^{\prime}\right\|^{2}-\left\|x-x^{\prime}\right\|^{2}}{2} .
$$

Example

ℓ_{1} norm on R^{d} is NOT generated by an inner product. [Exercise]
Is ℓ_{2} norm on \mathbf{R}^{d} generated by an inner product?

Pythagorean Theorem

Definition
Two vectors are orthogonal if $\left\langle x, x^{\prime}\right\rangle=0$. We denote this by $x \perp x^{\prime}$.
Definition
x is orthogonal to a set S, i.e. $x \perp S$, if $x \perp s$ for all $x \in S$.
Theorem (Pythagorean Theorem)
If $x \perp x^{\prime}$, then $\left\|x+x^{\prime}\right\|^{2}=\|x\|^{2}+\left\|x^{\prime}\right\|^{2}$.
Proof.
We have

$$
\begin{aligned}
\left\|x+x^{\prime}\right\|^{2} & =\left\langle x+x^{\prime}, x+x^{\prime}\right\rangle \\
& =\langle x, x\rangle+\left\langle x, x^{\prime}\right\rangle+\left\langle x^{\prime}, x\right\rangle+\left\langle x^{\prime}, x^{\prime}\right\rangle
\end{aligned}
$$

$$
-\|v\|^{2} \mid\left\|v^{\prime}\right\| 2
$$

Projection onto a Plane (Rough Definition)

- Choose some $x \in \mathcal{V}$.
- Let M be a subspace of inner product space \mathcal{V}.
- Then m_{0} is the projection of x onto M,
- if $m_{0} \in M$ and is the closest point to x in M.
- In math: For all $m \in M$,

$$
\left\|x-m_{0}\right\| \leqslant\|x-m\| .
$$

Hilbert Space

- Projections exist for all finite-dimensional inner product spaces.
- We want to allow infinite-dimensional spaces.
- Need an extra condition called completeness.
- A space is complete if all Cauchy sequences in the space converge.

Definition

A Hilbert space is a complete inner product space.

Example

Any finite dimensional inner product space is a Hilbert space.

The Projection Theorem

Theorem (Classical Projection Theorem)

- \mathcal{H} a Hilbert space
- M a closed subspace of \mathcal{H} (picture a hyperplane through the origin)
- For any $x \in \mathcal{H}$, there exists a unique $m_{0} \in M$ for which

$$
\left\|x-m_{0}\right\| \leqslant\|x-m\| \forall m \in M .
$$

- This m_{0} is called the [orthogonal] projection of x onto M.
- Furthermore, $m_{0} \in M$ is the projection of x onto M iff

$$
x-m_{0} \perp M .
$$

Projection Reduces Norm

Theorem

Let M be a closed subspace of \mathcal{H}. For any $x \in \mathcal{H}$, let $m_{0}=\operatorname{Proj}_{M} x$ be the projection of x onto M. Then

$$
\left\|m_{0}\right\| \leqslant\|x\|
$$

with equality only when $m_{0}=x$.
Proof.

$$
\begin{aligned}
\|x\|^{2} & =\left\|m_{0}+\left(x-m_{0}\right)\right\|^{2}\left(\text { note: } x-m_{0} \perp m_{0} \text { by Projection theorem }\right) \\
& =\left\|m_{0}\right\|^{2}+\left\|x-m_{0}\right\|^{2} \text { by Pythagorean theorem } \\
\left\|m_{0}\right\|^{2} & =\|x\|^{2}-\left\|x-m_{0}\right\|^{2}
\end{aligned}
$$

Then $\left\|x-m_{0}\right\|^{2} \geqslant 0$ implies $\left\|m_{0}\right\|^{2} \leqslant\|x\|^{2}$. If $\left\|x-m_{0}\right\|^{2}=0$, then $x=m_{0}$, by definition of norm.

Representer Theorem

Generalize from SVM Objective

- Featurized SVM objective:

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{2}\|w\|^{2}+\frac{c}{n} \sum_{i=1}^{n} \max \left(0,1-y_{i}\left[\left\langle w, \psi\left(x_{i}\right)\right\rangle\right]\right) .
$$

- Generalized objective:

$$
\min _{w \in \mathcal{H}} R(\|w\|)+L\left(\left\langle w, \psi\left(x_{1}\right)\right\rangle, \ldots,\left\langle w, \psi\left(x_{n}\right)\right\rangle\right),
$$

where

- $R: \mathbf{R} \geqslant 0 \rightarrow \mathbf{R}$ is nondecreasing (Regularization term)
- and $L: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is arbitrary. (Loss term)

General Objective Function for Linear Hypothesis Space (Details)

- Generalized objective:

$$
\min _{w \in \mathcal{H}} R(\|w\|)+L\left(\left\langle w, \psi\left(x_{1}\right)\right\rangle, \ldots,\left\langle w, \psi\left(x_{n}\right)\right\rangle\right),
$$

where

- $w, \psi\left(x_{1}\right), \ldots, \psi\left(x_{n}\right) \in \mathcal{H}$ for some Hilbert space \mathcal{H}. (We typically have $\mathcal{H}=\mathbf{R}^{d}$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathcal{H}. (i.e. $\|w\|=\sqrt{\langle w, w\rangle}$)
- $R:[0, \infty) \rightarrow \mathbf{R}$ is nondecreasing (Regularization term), and
- $L: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is arbitrary (Loss term).

General Objective Function for Linear Hypothesis Space (Details)

- Generalized objective:

$$
\min _{w \in \mathcal{H}} R(\|w\|)+L\left(\left\langle w, \psi\left(x_{1}\right)\right\rangle, \ldots,\left\langle w, \psi\left(x_{n}\right)\right\rangle\right),
$$

- What's "linear'?
- The prediction/score function $x \mapsto\left\langle w, \psi\left(x_{i}\right)\right\rangle$ is linear - in what?
- in parameter vector w, and
- in the feature vector $\psi\left(x_{i}\right)$.
- Why? [Real-valued] inner products are linear in each argument.
- The important part is the linearity in the parameter w.
- When we discuss neural networks, we'll mention a "linear network" in which prediction functions are linear in the feature vector $\psi(x)$, but nonlinear in the parameter vector w. In other words, we have something like

$$
\min _{w \in \mathcal{H}} R(\|w\|)+L\left(\left\langle f(w), \psi\left(x_{1}\right)\right\rangle, \ldots,\left\langle f(w), \psi\left(x_{n}\right)\right\rangle\right)
$$

for some (known) nonlinear function f. Our discussion will not apply to this situation.

General Objective Function for Linear Hypothesis Space (Details)

- Generalized objective:

$$
\min _{w \in \mathscr{H}} R(\|w\|)+L\left(\left\langle w, \psi\left(x_{1}\right)\right\rangle, \ldots,\left\langle w, \psi\left(x_{n}\right)\right\rangle\right),
$$

- Ridge regression and SVM are of this form.
- What if we penalize with $\lambda\|w\|_{2}$ instead of $\lambda\|w\|_{2}^{2}$? Yes!.
- What if we use lasso regression? No! ℓ_{1} norm does not correspond to an inner product.

The Representer Theorem

Theorem (Representer Theorem)
Let

$$
J(w)=R(\|w\|)+L\left(\left\langle w, \psi\left(x_{1}\right)\right\rangle, \ldots,\left\langle w, \psi\left(x_{n}\right)\right\rangle\right),
$$

where

- $w, \psi\left(x_{1}\right), \ldots, \psi\left(x_{n}\right) \in \mathcal{H}$ for some Hilbert space \mathcal{H}. (We typically have $\mathcal{H}=\mathbf{R}^{d}$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathcal{H}. (i.e. $\|w\|=\sqrt{\langle w, w\rangle}$)
- $R: \mathbf{R} \geqslant 0 \rightarrow \mathbf{R}$ is nondecreasing (Regularization term), and
- $L: \mathrm{R}^{n} \rightarrow \mathrm{R}$ is arbitrary (Loss term).

If $J(w)$ has a minimizer, then it has a minimizer of the form $w^{*}=\sum_{i=1}^{n} \alpha_{i} \psi\left(x_{i}\right)$. [If R is strictly increasing, then all minimizers have this form. (Proof in homework.)]

The Representer Theorem (Proof)

(1) Let w^{*} be a minimizer.
(2) Let $M=\operatorname{span}\left(\psi\left(x_{1}\right), \ldots, \psi\left(x_{n}\right)\right)$. [the "span of the data"]
(3) Let $w=\operatorname{Proj}_{M} w^{*}$. So $\exists \alpha$ s.t. $w=\sum_{i=1}^{n} \alpha_{i} \psi\left(x_{i}\right)$.
(9) Then $w^{\perp}:=w^{*}-w$ is orthogonal to M.
(5) Projections decrease norms: $\|w\| \leqslant\left\|w^{*}\right\|$.
(6) Since R is nondecreasing, $R(\|w\|) \leqslant R\left(\left\|w^{*}\right\|\right)$.
(1) By (4), $\left\langle w^{*}, \psi\left(x_{i}\right)\right\rangle=\left\langle w+w^{\perp}, \psi\left(x_{i}\right)\right\rangle=\left\langle w, \psi\left(x_{i}\right)\right\rangle$.
(8) $L\left(\left\langle w^{*}, \psi\left(x_{1}\right)\right\rangle, \ldots,\left\langle w^{*}, \psi\left(x_{n}\right)\right\rangle\right)=L\left(\left\langle w, \psi\left(x_{1}\right)\right\rangle, \ldots,\left\langle w, \psi\left(x_{n}\right)\right\rangle\right)$
(0) $J(w) \leqslant J\left(w^{*}\right)$.
(10) Therefore $w=\sum_{i=1}^{n} \alpha_{i} \psi\left(x_{i}\right)$ is also a minimizer.
Q.E.D.

Using Representer Theorem to Kernelize

Kernelized Predictions

- Consider $w=\sum_{i=1}^{n} \alpha_{i} \psi\left(x_{i}\right)$. (As representer theorem implies.)
- How do we make predictions for a given $x \in X$?

$$
\begin{aligned}
f(x)=\langle w, \psi(x)\rangle & =\left\langle\sum_{i=1}^{n} \alpha_{i} \psi\left(x_{i}\right), \psi(x)\right\rangle \\
& =\sum_{i=1}^{n} \alpha_{i}\left\langle\psi\left(x_{i}\right), \psi(x)\right\rangle \\
& =\sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right)
\end{aligned}
$$

Note: $f(x)$ is a linear combination of $k\left(x_{1}, x\right), \ldots, k\left(x_{n}, x\right)$, all considered as functions of x.

Kernelized Regularization

- Consider $w=\sum_{i=1}^{n} \alpha_{i} \psi\left(x_{i}\right)$.
- What does $R(\|w\|)$ look like?

$$
\begin{aligned}
\|w\|^{2} & =\langle w, w\rangle \\
& =\left\langle\sum_{i=1}^{n} \alpha_{i} \psi\left(x_{i}\right), \sum_{j=1}^{n} \alpha_{j} \psi\left(x_{j}\right)\right\rangle \\
& =\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j}\left\langle\psi\left(x_{i}\right), \psi\left(x_{j}\right)\right\rangle \\
& =\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right)
\end{aligned}
$$

(You should recognize the last expression as a quadratic form.)

The Kernel Matrix (a.k.a. Gram Matrix)

Definition

The kernel matrix or Gram matrix for a kernel k on a set $\left\{x_{1}, \ldots, x_{n}\right\}$ is

$$
K=\left(k\left(x_{i}, x_{j}\right)\right)_{i, j}=\left(\begin{array}{ccc}
k\left(x_{1}, x_{1}\right) & \cdots & k\left(x_{1}, x_{n}\right) \\
\vdots & \ddots & \cdots \\
k\left(x_{n}, x_{1}\right) & \cdots & k\left(x_{n}, x_{n}\right)
\end{array}\right) \in \mathbf{R}^{n \times n} .
$$

Kernelized Regularization: Matrix Form

- Consider $w=\sum_{i=1}^{n} \alpha_{i} \psi\left(x_{i}\right)$.
- What does $R(\|w\|)$ look like?

$$
\begin{aligned}
\|w\|^{2} & =\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right) \\
& =\alpha^{\top} K \alpha
\end{aligned}
$$

- So $R(\|w\|)=R\left(\sqrt{\alpha^{\top} K \alpha}\right)$.

Kernelized Predictions

- Write $f_{\alpha}(x)=\sum_{i=1}^{n} \alpha_{i} k\left(x, x_{i}\right)$. (Switched from $k\left(x_{i}, x\right)$ by symmetry of inner product.)
- Predictions on the training points have a particularly simple form:

$$
\begin{aligned}
\left(\begin{array}{c}
f_{\alpha}\left(x_{1}\right) \\
\vdots \\
f_{\alpha}\left(x_{n}\right)
\end{array}\right) & =\left(\begin{array}{c}
\alpha_{1} k\left(x_{1}, x_{1}\right)+\cdots+\alpha_{n} k\left(x_{1}, x_{n}\right) \\
\vdots \\
\alpha_{1} k\left(x_{n}, x_{1}\right)+\cdots+\alpha_{n} k\left(x_{n}, x_{n}\right)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
k\left(x_{1}, x_{1}\right) & \cdots & k\left(x_{1}, x_{n}\right) \\
\vdots & \ddots & \cdots \\
k\left(x_{n}, x_{1}\right) & \cdots & k\left(x_{n}, x_{n}\right)
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right) \\
& =K \alpha
\end{aligned}
$$

Kernelized Objective

- Substituting

$$
w=\sum_{i=1}^{n} \alpha_{i} \psi\left(x_{i}\right)
$$

into generalized objective, we get

$$
\min _{\alpha \in \mathbf{R}^{n}} R\left(\sqrt{\alpha^{T} K \alpha}\right)+L(K \alpha)
$$

- No direct access to $\psi\left(x_{i}\right)$.
- All references are via kernel matrix K.
- This is the kernelized objective function.

Kernelized SVM

- The SVM objective:

$$
\min _{w \in \mathcal{H}} \frac{1}{2}\|w\|^{2}+\frac{c}{n} \sum_{i=1}^{n}\left(1-y_{i}\left[\left\langle w, \psi\left(x_{i}\right)\right\rangle\right]\right)_{+} .
$$

- Kernelizing yields

$$
\min _{\alpha \in \mathbf{R}^{n}} \frac{1}{2} \alpha^{T} K \alpha+\frac{c}{n} \sum_{i=1}^{n}\left(1-y_{i}(K \alpha)_{i}\right)_{+}
$$

Kernelized Ridge Regression

- Ridge Regression:

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}-y_{i}\right)^{2}+\lambda\|w\|^{2}
$$

- Featurized Ridge Regression

$$
\min _{w \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n}\left(\left\langle w, \psi\left(x_{i}\right)\right\rangle-y_{i}\right)^{2}+\lambda\|w\|^{2}
$$

- Kernelized Ridge Regression

$$
\min _{\alpha \in \mathbf{R}^{n}} \frac{1}{n}\|K \alpha-y\|^{2}+\lambda \alpha^{T} K \alpha,
$$

where $y=\left(y_{1}, \ldots, y_{n}\right)^{T}$.

Prediction Functions with RBF Kernel

Radial Basis Function (RBF) / Gaussian Kernel

- Input space $X=\mathbf{R}^{d}$

$$
k(w, x)=\exp \left(-\frac{\|w-x\|^{2}}{2 \sigma^{2}}\right),
$$

where σ^{2} is known as the bandwidth parameter.

- Does it act like a similarity score?
- Why "radial"?
- Have we departed from our "inner product of feature vector" recipe?
- Yes and no: corresponds to an infinite dimensional feature vector
- Probably the most common nonlinear kernel.

RBF Basis

- Input space $X=\mathbf{R}$
- Output space: $y=\mathrm{R}$
- RBF kernel $k(w, x)=\exp \left(-(w-x)^{2}\right)$.
- Suppose we have 6 training examples: $x_{i} \in\{-6,-4,-3,0,2,4\}$.
- If representer theorem applies, then

$$
f(x)=\sum_{i=1}^{6} \alpha_{i} k\left(x_{i}, x\right) .
$$

- f is a linear combination of 6 basis functions of form $k\left(x_{i}, \cdot\right)$:

RBF Predictions

- Basis functions

- Predictions of the form $f(x)=\sum_{i=1}^{6} \alpha_{i} k\left(x_{i}, x\right)$:

- When kernelizing with RBF kernel, prediction functions always look this way.
- (Whether we get w from SVM, ridge regression, etc...)

RBF Feature Space: The Sequence Space ℓ_{2}

- To work with infinite dimensional feature vectors, we need a space with certain properties.
- an inner product
- a norm related to the inner product
- projection theorem: $x=x_{\perp}+x_{\|}$where $x_{\|} \in S=\operatorname{span}\left(w_{1}, \ldots, w_{n}\right)$ and $\left\langle x_{\perp}, s\right\rangle=0 \quad \forall s \in S$.
- Basically, we need a Hilbert space.

Definition

ℓ_{2} is the space of all real-valued sequences: $\left(x_{0}, x_{1}, x_{2}, x_{3}, \ldots\right)$ with $\sum_{i=0}^{\infty} x_{i}^{2}<\infty$.

Theorem

With the the inner product $\left\langle x, x^{\prime}\right\rangle=\sum_{i=0}^{\infty} x_{i} x_{i}^{\prime}, \ell_{2}$ is a Hilbert space.

The Infinite Dimensional Feature Vector for RBF

- Consider RBF kernel (1-dim): $k\left(x, x^{\prime}\right)=\exp \left(-\left(x-x^{\prime}\right)^{2} / 2\right)$
- We claim that $\psi: \mathbf{R} \rightarrow \ell_{2}$ defined by

$$
[\psi(x)]_{n}=\frac{1}{\sqrt{n!}} e^{-x^{2} / 2} x^{n}
$$

gives the "infinite-dimensional feature vector" corresponding to RBF kernel.

- Is this mapping even well-defined? Is $\psi(x)$ even an element of ℓ_{2} ?
- Yes:

$$
\sum_{n=0}^{\infty} \frac{1}{n!} e^{-x^{2}} x^{2 n}=e^{-x^{2}} \sum_{n=0}^{\infty} \frac{\left(x^{2}\right)^{n}}{n!}=1<\infty
$$

The Infinite Dimensional Feature Vector for RBF

- Does feature vector $[\psi(x)]_{n}=\frac{1}{\sqrt{n!}} e^{-x^{2} / 2} x^{n}$ actually correspond to the RBF kernel?
- Yes! Proof:

$$
\begin{aligned}
\left\langle\psi(x), \psi\left(x^{\prime}\right)\right\rangle & =\sum_{n=0}^{\infty} \frac{1}{n!} e^{-\left(x^{2}+\left(x^{\prime}\right)^{2}\right) / 2} x^{n}\left(x^{\prime}\right)^{n} \\
& =e^{-\left(x^{2}+\left(x^{\prime}\right)^{2}\right) / 2} \sum_{n=0}^{\infty} \frac{\left(x x^{\prime}\right)^{n}}{n!} \\
& =\exp \left(-\left[x^{2}+\left(x^{\prime}\right)^{2}\right] / 2\right) \exp \left(x x^{\prime}\right) \\
& =\exp \left(-\left[\left(x-x^{\prime}\right)^{2} / 2\right]\right)
\end{aligned}
$$

QED

When is $k\left(x, x^{\prime}\right)$ a kernel function? (Mercer's Theorem)

How to Get Kernels?

(1) Explicitly construct $\psi(x): \mathcal{X} \rightarrow \mathbf{R}^{d}$ and define $k\left(x, x^{\prime}\right)=\psi(x)^{T} \psi\left(x^{\prime}\right)$.
(2) Directly define the kernel function $k\left(x, x^{\prime}\right)$, and verify it corresponds to $\left\langle\psi(x), \psi\left(x^{\prime}\right)\right\rangle$ for some ψ.

There are many theorems to help us with the second approach

Positive Semidefinite Matrices

Definition
A real, symmetric matrix $M \in \mathbf{R}^{n \times n}$ is positive semidefinite (psd) if for any $x \in \mathbf{R}^{n}$,

$$
x^{\top} M x \geqslant 0
$$

Theorem

The following conditions are each necessary and sufficient for M to be positive semidefinite:

- M has a "square root", i.e. there exists R s.t. $M=R^{T} R$.
- All eigenvalues of M are greater than or equal to 0 .

Positive Semidefinite Function

Definition

A symmetric kernel function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbf{R}$ is positive semidefinite (psd) if for any finite set $\left\{x_{1}, \ldots, x_{n}\right\} \in \mathcal{X}$, the kernel matrix on this set

$$
K=\left(k\left(x_{i}, x_{j}\right)\right)_{i, j}=\left(\begin{array}{ccc}
k\left(x_{1}, x_{1}\right) & \cdots & k\left(x_{1}, x_{n}\right) \\
\vdots & \ddots & \ldots \\
k\left(x_{n}, x_{1}\right) & \cdots & k\left(x_{n}, x_{n}\right)
\end{array}\right)
$$

is a positive semidefinite matrix.

Mercer's Theorem

Theorem
A symmetric function $k\left(x, x^{\prime}\right)$ can be expressed as an inner product

$$
k\left(x, x^{\prime}\right)=\left\langle\psi(x), \psi\left(x^{\prime}\right)\right\rangle
$$

for some ψ if and only if $k\left(x, x^{\prime}\right)$ is positive semidefinite.

Generating New Kernels from Old

- Suppose $k, k_{1}, k_{2}: X \times X \rightarrow \mathbf{R}$ are psd kernels. Then so are the following:

$$
\begin{aligned}
k_{\text {new }}\left(x, x^{\prime}\right) & =k_{1}\left(x, x^{\prime}\right)+k_{2}\left(x, x^{\prime}\right) \\
k_{\text {new }}\left(x, x^{\prime}\right) & =\alpha k\left(x, x^{\prime}\right) \\
k_{\text {new }}\left(x, x^{\prime}\right) & =f(x) f\left(x^{\prime}\right) \text { for any function } f(\cdot) \\
k_{\text {new }}\left(x, x^{\prime}\right) & =k_{1}\left(x, x^{\prime}\right) k_{2}\left(x, x^{\prime}\right)
\end{aligned}
$$

- See Appendix for details.
- Lots more theorems to help you construct new kernels from old...

Details on New Kernels from Old

Additive Closure

- Suppose k_{1} and k_{2} are psd kernels with feature maps ϕ_{1} and ϕ_{2}, respectively.
- Then

$$
k_{1}\left(x, x^{\prime}\right)+k_{2}\left(x, x^{\prime}\right)
$$

is a psd kernel.

- Proof: Concatenate the feature vectors to get

$$
\phi(x)=\left(\phi_{1}(x), \phi_{2}(x)\right)
$$

Then ϕ is a feature map for $k_{1}+k_{2}$.

Closure under Positive Scaling

- Suppose k is a psd kernel with feature maps ϕ.
- Then for any $\alpha>0$,

$$
\alpha k
$$

is a psd kernel.

- Proof: Note that

$$
\phi(x)=\sqrt{\alpha} \phi(x)
$$

is a feature map for αk.

Scalar Function Gives a Kernel

- For any function $f(x)$,

$$
k\left(x, x^{\prime}\right)=f(x) f\left(x^{\prime}\right)
$$

is a kernel.

- Proof: Let $f(x)$ be the feature mapping. (It maps into a 1-dimensional feature space.)

$$
\left\langle f(x), f\left(x^{\prime}\right)\right\rangle=f(x) f\left(x^{\prime}\right)=k\left(x, x^{\prime}\right) .
$$

Closure under Hadamard Products

- Suppose k_{1} and k_{2} are psd kernels with feature maps ϕ_{1} and ϕ_{2}, respectively.
- Then

$$
k_{1}\left(x, x^{\prime}\right) k_{2}\left(x, x^{\prime}\right)
$$

is a psd kernel.

- Proof: Take the outer product of the feature vectors:

$$
\phi(x)=\phi_{1}(x)\left[\phi_{2}(x)\right]^{T} .
$$

Note that $\phi(x)$ is a matrix.

- Continued...

Closure under Hadamard Products

- Then

$$
\begin{aligned}
\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle & =\sum_{i, j} \phi(x) \phi\left(x^{\prime}\right) \\
& =\sum_{i, j}\left[\phi_{1}(x)\left[\phi_{2}(x)\right]^{T}\right]_{i j}\left[\phi_{1}\left(x^{\prime}\right)\left[\phi_{2}\left(x^{\prime}\right)\right]^{T}\right]_{i j} \\
& =\sum_{i, j}\left[\phi_{1}(x)\right]_{i}\left[\phi_{2}(x)\right]_{j}\left[\phi_{1}\left(x^{\prime}\right)\right]_{i}\left[\phi_{2}\left(x^{\prime}\right)\right]_{j} \\
& =\left(\sum_{i}\left[\phi_{1}(x)\right]_{i}\left[\phi_{1}\left(x^{\prime}\right)\right]_{i}\right)\left(\sum_{j}\left[\phi_{2}(x)\right]_{j}\left[\phi_{2}\left(x^{\prime}\right)\right]_{j}\right) \\
& =k_{1}\left(x, x^{\prime}\right) k_{2}\left(x, x^{\prime}\right)
\end{aligned}
$$

