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Setup and Motivation J
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The Input Space X

@ Our general learning theory setup: no assumptions about X
@ But X =R for the specific methods we've developed:

e Ridge regression
o Lasso regression
e Support Vector Machines

@ Our hypothesis space for these was all affine functions on RY:
H={x—w'x+blweR?beR}.

e What if we want to do prediction on inputs not natively in R9?
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Feature Extraction

Definition
Mapping an input from X to a vector in RY is called feature extraction or featurization. J
Raw Input Feature Vector
L _ Feature O (CC
X —> : R?
Extraction
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Linear Models with Explicit Feature Map

Input space: X (no assumptions)
Introduce feature map 1\ : X — RY

The feature map maps into the feature space RY.

Hypothesis space of affine functions on feature space:

H={x—>wP(x)+b|weR?becR]}.
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Geometric Example: Two class problem, nonlinear boundary

I

T2

@ With linear feature map ¢(x) = (x1,x2) and linear models, can't separate regions
o With appropriate nonlinearity ¢(x) = (xl,xz,x12+x22), piece of cake.
@ Video: http://youtu.be/31iCbRZPrZA

From Percy Liang's "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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http://youtu.be/3liCbRZPrZA

Expressivity of Hypothesis Space

o Consider a linear hypothesis space with a feature map ¢ : X — RY:

F={fx)=w'd(x)}

All predictors

Feature extraction

Question: does F contain a good predictor?

We can grow the linear hypothesis space F by adding more features.

From Percy Liang's "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Linear Models Need Big Feature Spaces

To get expressive hypothesis spaces using linear models,
o need high-dimensional feature spaces

Suppose we start with x = (1,xi,...,xg) € R¥T1 =X.

We want to add all monomials of degree M: x{*---x5¢, with py+---+pg = M.

How many features will we end up with?

° (MJFAf,*l) (“flower shop problem” from combinatorics)

For d =40 and M =8, we get 314457495 features.

@ That will make some extremely large matrices...
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Big Feature Spaces

Very large feature spaces have two problems:
@ Overfitting

@ Memory and computational costs

@ Overfitting we handle with regularization.

@ “Kernel methods” can (sometimes) help with memory and computational costs.
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Kernel Methods: Motivation J
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Review: Linear SVM and Dual

@ The [featurized] SVM prediction function is the solution to

. 1 2 C f T
Werr?d',rf,eR§||WH +n;(1—}’i [w'db(x)+b]) .

e Found it is equivalent to solve the dual problem to get o*:

n n
1
sup E “’_EE aiogyiyb (%) T (x;)
x i=1 ij=1

n
s.t. Zoc,-y,-zO
i=1
ae0S]i=1..n
n

@ Notice: VP (x)'s only show up as inner products with other x's.
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Some Methods Can Be “Kernelized"

Definition
A method is kernelized if inputs only appear inside inner products: (\(x),{(x’)) for x,x’ € DCJ

@ The kernel function corresponding to { and inner product (-,-) is
klx,x") = (9 (), b (x)).

@ Why introduce this new notation k(x,x’)?

@ Turns out, we can often evaluate k(x, x’) directly,
o without explicitly computing \(x) and {(x’).

o For large feature spaces, can be much faster.
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Kernel Evaluation Can Be Fast

Example

Quadratic feature map for x = (xq, ..., x4) €RY.

d(x) = (xq,... ,xd,x12, . ,xf,, V2x1x0,. .., \/ix,-xj, ) ..\/Exd,lxd)T

has dimension O(d?), but for any x,x’ € R?

k(x,x") = {$(x), d(x")) = (x,x"y + <x,x’>2

o Naively explicit computation of k(x,x’): O(d?)
@ Implicit computation of k(x,x"): O(d)
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Kernels as Similarity Scores

o Often useful to think of the kernel function as a similarity score.
@ But this is not a mathematically precise statement.

@ There are many ways to design a similarity score.

o We will use Mercer kernels, which correspond to inner products in some feature space.
e Has many mathematical benefits.
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What are the Benefits of Kernelization?

© Computational (e.g. when feature space dimension d larger than sample size n).
@ Access to infinite-dimensional feature spaces.

© Allows thinking in terms of “similarity” rather than features.
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Example: SVM J
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SVM Dual

@ Recall the SVM dual optimization problem for training set (x1,y1),..., (X0, ¥n):

n n
1 T
sup ZE:(Xi—-é'zzi ajog)qygxg Xj
& i=1 ij=1
n
s.t. zz: oiyi=0
i=1

«; € [0,5] i=1....n
n

@ Can replace ijx,- by an arbitrary kernel k(x;, x;).

@ What kernel are we currently using?
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Linear Kernel

o Input space: X =RY
o Feature space: H = RY, with standard inner product
@ Feature map
P(x) =x
o Kernel:
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The Kernel Matrix (or the Gram Matrix)

Definition
For points of x1,...,x, € X and an inner product (-,-) on X, the kernel matrix or the Gram
matrix is defined as
(xixa) o (X xn)
K:(<Xivxj>)i,j: :
(Xnx1) -+ (Xn,Xn)

Then for the standard Euclidean inner product (x;,x;) = x./ x;, we have

K=xxT
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SVM Dual with Kernel Matrix

n n
1
sup Z %= Z x;jyiyiKji
& i=1 ij=1
n
s.t. Z xiyi =0
i=1

oc,-E[O,;] i=1,....n

@ Once our algorithm works with kernel matrices, we can change kernel just by changing the
matrix.

@ Size of matrix: nx n, where n is the number of data points.

@ Recall with ridge regression, we worked with X 7 X, which is d x d, where d is feature
space dimension.
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Some Nonlinear Kernels J
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Quadratic Kernel in RY

Input space X = R¢
Feature space: H =RP, where D =d + ((2]) ~d?/2.

Feature map:

d(x) = (x1,... ,Xd,X12, . ,Xg, \[2X1X2, . .,\@X,’Xj, . \f2xd_1xd)T

Then for Vx,x’ € R4

kix,x") = (d(x),d(x)
= (o)t ()

Computation for inner product with explicit mapping: O(d?)

Computation for implicit kernel calculation: O(d).

Based on Guillaume Obozinski's Statistical Machine Learning course at Louvain, Feb 2014.
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Polynomial Kernel in R?

Input space X = R?

Kernel function:

k(x,x") = (1+ <x,x/>)M

Corresponds to a feature map with all monomials up to degree M.

For any M, computing the kernel has same computational cost

Cost of explicit inner product computation grows rapidly in M.

" David S. Rosenberg (Bloomberg ML EDU) October 26, 2017  23/70



Radial Basis Function (RBF) / Gaussian Kernel

e Input space X =RY. Vx,x’ € RY,
112
[[x ="
k(w,x)=exp | ———— |,
() =exp (20
where 02 is known as the bandwidth parameter.
@ Does it act like a similarity score?
e Why “radial™?
@ Have we departed from our “inner product of feature vector” recipe?
e Yes and no: corresponds to an infinite dimensional feature vector
@ Probably the most common nonlinear kernel.
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Kernel Trick: Overview J
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The “Kernel Trick”

@ Given a kernelized ML algorithm.

@ Can swap out the inner product for a new kernel function.

© New kernel may correspond to a high dimensional feature space.

@ Once kernel matrix is computed, computational cost depends on number of data points,

rather than the dimension of feature space.

Swapping out a linear kernel for a new kernel is called the kernel trick.
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Inner Product Spaces and Projections (Hilbert Spaces) J
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Inner Product Space (or “Pre-Hilbert” Spaces)

An inner product space (over reals) is a vector space V and an inner product, which is a
mapping

(,):VxV—=R
that has the following properties Vx,y,z€V and a,b € R:
e Symmetry: (x,y) = (y,x)

e Linearity: (ax+by,z) =a(x,z)+b(y,z)

@ Positive-definiteness: (x,x) >0 and (x,x) =0 <= x=0.
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Norm from Inner Product

For an inner product space, we define a norm as
x|l = v/ (x, %)

Example
R with standard Euclidean inner product is an inner product space:
(x,y)=xTy Vx,y € RY.

Norm is

Ix]| = VxTx.
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What norms can we get from an inner product?

Theorem (Parallelogram Law)

A norm || - || can be written in terms of an inner product on V iff Vx,x’ €V
201x[12 +2[1x"12 = x +x 1+ [1x = x[12,
and if it can, the inner product is given by the polarization identity

X XN = lx —x 112

() 2

Example

¢; norm on RY is NOT generated by an inner product. [Exercise]

Is & norm on RY generated by an inner product?
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Pythagorean Theorem

Definition
Two vectors are orthogonal if (x,x’) =0. We denote this by x 1L x’.

Definition

x is orthogonal to aset S, i.e. x L S, if x Lsforall xeS.

Theorem (Pythagorean Theorem)
If x L x', then ||x+x'||2 = ||x]|2+ ||x"||?.

Proof.
We have

[x+x|? = (x+x",x+x")

= <x,x>—|—<x,x’>+<x’,x>+<x',x’>
N2 0 1112
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Projection onto a Plane (Rough Definition)

Choose some x € V.

Let M be a subspace of inner product space V.

Then myg is the projection of x onto M,
e if mp € M and is the closest point to x in M.

o In math: For all me M,
[[x —mol| < |[x —m]|.

" David S. Rosenberg (Bloomberg ML EDU) October 26, 2017

32/70



Hilbert Space

@ Projections exist for all finite-dimensional inner product spaces.
@ We want to allow infinite-dimensional spaces.
@ Need an extra condition called completeness.

@ A space is complete if all Cauchy sequences in the space converge.

Definition
A Hilbert space is a complete inner product space. J

Example J

Any finite dimensional inner product space is a Hilbert space.
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The Projection Theorem

Theorem (Classical Projection Theorem)
e H a Hilbert space
@ M a closed subspace of H (picture a hyperplane through the origin)

@ For any x € H, there exists a unique my € M for which
lIx —mo|| < ||x—ml|| Vm e M.

e This mg is called the [orthogonal] projection of x onto M.

e Furthermore, mg € M is the projection of x onto M iff

X—moJ_M.
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Projection Reduces Norm

Theorem

Let M be a closed subspace of H. For any x € H, let mg = Projy,x be the projection of x onto
M. Then

[[mol| < ]I,
with equality only when mg = x.
Proof.
x> = |lmo+(x—mo)|? (note: x—mgy L mg by Projection theorem)
= ||mol[*+ ||x — mo||? by Pythagorean theorem

lmol® = [lx]I* = llx — mo| |

Then ||x —mg||2 > 0 implies ||mo||? < ||x||?. If ||[x —mp||? =0, then x = my, by definition of
norm.

O

y
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Representer Theorem J
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Generalize from SVM Objective

o Featurized SVM objective:
min 2wl +S 3 max(0,1- i {w,  (x)))
WeRd 2 n I:1 1 yl 1 1 .

o Generalized objective:
min R (lwl]) L (w00 o (w0 x).

where

o R:RZ% - R is nondecreasing (Regularization term)
o and L:R" — R is arbitrary. (Loss term)
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General Objective Function for Linear Hypothesis Space (Details)

o Generalized objective:

V%ing(\IWH)+L(<W,U2(X1)>.---,<W'1P(Xn)>),

where
o w,P(x1),..., P(x,) € H for some Hilbert space 3. (We typically have 3{ =R¢.)
o ||+ || is the norm corresponding to the inner product of 3. (i.e. ||w| =+/(w,w))
e R:[0,00) — R is nondecreasing (Regularization term), and
o L:R" — R is arbitrary (Loss term).
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General Objective Function for Linear Hypothesis Space (Details)

e Generalized objective:
min RO+ L ((w,0a)) oo (w b)),

@ What's “linear?
@ The prediction/score function x — (w,{(x;)) is linear — in what?
e in parameter vector w, and
o in the feature vector P (x;).
@ Why? [Real-valued] inner products are linear in each argument.
@ The important part is the linearity in the parameter w.
@ When we discuss neural networks, we'll mention a “linear network” in which prediction
functions are linear in the feature vector \(x), but nonlinear in the parameter vector w. In
other words, we have something like

min R([lwl)+L{(F(w). b0xa)), ... {F(w) b(xa)),

for some (known) nonlinear function f. Our discussion will not apply to this situation.
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General Objective Function for Linear Hypothesis Space (Details)

o Generalized objective:

min RO+ L((w, )} (w b)),

e Ridge regression and SVM are of this form.

o What if we penalize with A||w/||» instead of Al|w/||3? Yes!.

@ What if we use lasso regression? No! {; norm does not correspond to an inner product.
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The Representer Theorem

Theorem (Representer Theorem)
Let

Jw) =R ([|w|)) +L{w, b(x1)),....(w, b(xn))),
where
o w,(x1),...,P(x,) € K for some Hilbert space . (We typically have 7{ = R9.)

@ ||-|| is the norm corresponding to the inner product of H. (i.e. ||w| = /(w,w))
e R:R>% — R is nondecreasing (Regularization term), and
e L:R" — R is arbitrary (Loss term).

If J(w) has a minimizer, then it has a minimizer of the form w* =37 _; a(x;).
[If R is strictly increasing, then all minimizers have this form. (Proof in homework.)]
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The Representer Theorem (Proof)

Let w* be a minimizer.

Let M =span({(x1),..., P(xn)). [the “span of the data”]

Let w =Projyw*. So Ja s.t. w=>_[_; ajp(x;).

Then w := w* —w is orthogonal to M.

Projections decrease norms: ||w|| < ||w*||.

Since R is nondecreasing, R(||w||) < R(||w*]|).

By (4), (w* (x)) = (w+wh, (x)) = (w,b(x)).

LU D0xa)) - (W () = L((w, b)) (W, ()
J(w) < J(w™).

@ Therefore w =) [ ; aj\(x;) is also a minimizer.

Q.E.D.

000000 OO0CO
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Using Representer Theorem to Kernelize J
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Kernelized Predictions

e Consider w =) 7 ; o; (x;). (As representer theorem implies.)

@ How do we make predictions for a given x € X7

f(x) = (wb(x)) = <Za;w(x,-),¢(x)>
i=1

— Zoc,- (WP(xi), P (x))

i=1
— Y ki)
i=1
Note: f(x) is a linear combination of k(x1,x),..., k(xn,x), all considered as functions of x.
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Kernelized Regularization

e Consider w =37, o (x;).
e What does R(||w||) look like?

Iwl? = (w,w)

= <Z o (Xi)vZO‘jll’ (Xj)>
= Z OCIOCJ (Xj)>

ij=1
n
= ) aiek(xi, X))
ij=1
(You should recognize the last expression as a quadratic form.)
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The Kernel Matrix (a.k.a. Gram Matrix)

Definition
The kernel matrix or Gram matrix for a kernel k on a set {x1,...,x,} is
k(XllX].) k(X].an)
— . . — - . nxn
K—(k(x,,xj))l.'j— : . e R
k(xn,x1) - k(Xn, Xn)
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Kernelized Regularization: Matrix Form

e Consider w =3 7 ; o (x;).
e What does R(||wl]|) look like?

Z OC;OCJk(X,',Xj)

ij=1
= o' K«

lwl?

e So R(||w|) = R(\/M).
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Kernelized Predictions

o Write fo(x) =3 [, aik(x,x;). (Switched from k(x;,x) by symmetry of inner product.)

@ Predictions on the training points have a particularly simple form:

fo(x1) ot k(xa, x1) 4+ xpk(x1, Xn)
fcx(xn) oclk(x,,,xl)+---+oc,,k(x,,,x,,)
k(X]_,X]_) k(X].an) o‘l
k(xp,x1) -+ k(xn,xp) ) \&n

= Ko
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Kernelized Objective

@ Substituting
wo= Zoéfll)(xi)
i=1

into generalized objective, we get

min R (\/ocTKoc) LK),

x€eR”

@ No direct access to P (x;).
o All references are via kernel matrix K.

@ This is the kernelized objective function.
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Kernelized SVM

@ The SVM objective:
min w2+ € 31—y Hwob b))
weH 2 n= +
o Kernelizing yields

1 n
min —o’ Ko+ EZ (1—yi(Ka);)
i=1

«€ER" 2 n 4
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Kernelized Ridge Regression

o Ridge Regression:

n

min 1Z(W Xj— y,) +Al|w|?

dn
weR N

o Featurized Ridge Regression

min —Z (w,P(x))
weH n !

i=1

o Kernelized Ridge Regression

) —yi)2 A wlf?

1
min = ||Koe—y|*> +Aa” Kex,
x€R™ n

October 26, 2017
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Prediction Functions with RBF Kernel J
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Radial Basis Function (RBF) / Gaussian Kernel

o Input space X =R

202

k(w,x) =exp <—HW_XH2> )

where 02 is known as the bandwidth parameter.

Does it act like a similarity score?
Why “radial?

Have we departed from our “inner product of feature vector” recipe?

e Yes and no: corresponds to an infinite dimensional feature vector

Probably the most common nonlinear kernel.
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RBF Basis

Input space X =R

Output space: Y=R

RBF kernel k(w,x) =exp (—(W—x)z).

Suppose we have 6 training examples: x; € {—6,—4,—3,0,2,4}.

If representer theorem applies, then

6
ZZOCik(Xi,X)
i—1

@ f is a linear combination of 6 basis functions of form k(x;,):

k(x,-6) k(x,0) kix,4)

-10 10

~ David 5. Rosenberg (Bloomberg ML EDU) Sl o By Sl




RBF Predictions

e Basis functions

k(x,-6) k(x,0) k(x,4)

PO, AN TSN

3 10

-10

@ Predictions of the form f(x) = Z?:l o k(x;, x):

@ When kernelizing with RBF kernel, prediction functions always look this way.

o (Whether we get w from SVM, ridge regression, etc...)
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RBF Feature Space: The Sequence Space {3

@ To work with infinite dimensional feature vectors, we need a space with certain properties.

e an inner product
e a norm related to the inner product
o projection theorem: x = x| + x| where x| € S =span(wy,...,w,) and (x1,s) =0 Vs€S.

@ Basically, we need a Hilbert space.

Definition
€, is the space of all real-valued sequences: (xg, x1,x2,x3,...) with Z?iox,? < 00.

Theorem
With the the inner product (x,x") =3 2 xix!, {» is a Hilbert space.
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The Infinite Dimensional Feature Vector for RBF

o Consider RBF kernel (1-dim): k(x,x’) =exp (— (X—x’)2/2>
e We claim that 1\ : R — {5 defined by

1 2
_ T —x%/2_n
W(x)], = me X

gives the “infinite-dimensional feature vector’ corresponding to RBF kernel.

@ Is this mapping even well-defined? Is \(x) even an element of {,7

2
Z %efxzxm' —e Z (Xn!) =1<o0

@ Yes:
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The Infinite Dimensional Feature Vector for RBF

@ Does feature vector \p(x)], = #e_xzﬁx”

@ Yes! Proof:

QED

actually correspond to the RBF kernel?

o0 1 )
S
e (XP+(x %)/ io(lel)n
exp (— [x2 x')ﬂ /2) exp (xx’)
exp (

—[=x"7/2])

October 26, 2017
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When is k(x,x’) a kernel function? (Mercer's Theorem) }
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How to Get Kernels?

@ Explicitly construct P (x) : X — R? and define k(x,x") = (x) T (x’).
@ Directly define the kernel function k(x,x’), and verify it corresponds to ({(x), P(x’)) for
some 1.

There are many theorems to help us with the second approach
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Positive Semidefinite Matrices

Definition
A real, symmetric matrix M € R"*" is positive semidefinite (psd) if for any x € R",

x T Mx > 0.

Theorem
The following conditions are each necessary and sufficient for M to be positive semidefinite:
@ M has a “square root”, i.e. there exists R s.t. M =RTR.

o All eigenvalues of M are greater than or equal to 0.
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Positive Semidefinite Function

Definition

A symmetric kernel function k : X x X — R is positive semidefinite (psd) if for any finite set
{x1,...,xn} € X, the kernel matrix on this set

k(xi,x1) -+ kx1,xa)
K= (k(Xi:Xj)),-’J-: : '
k(Xn:XI) k(Xn:Xn)

is a positive semidefinite matrix.
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Mercer's Theorem

Theorem

A symmetric function k(x,x") can be expressed as an inner product

k(x,x") = (P(x), b (x"))

for some \ if and only if k(x,x’) is positive semidefinite.
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Generating New Kernels from Old

@ Suppose k, ki, ko : X x X — R are psd kernels. Then so are the following:

knew(x,x") = ki(x,x")+ ka(x,x")
knew(x,x") = ok(x,x")

knew(x,x") = f(x)f(x') for any function f(-)
knew(X,X/) = kl(X,X/)kz(X,X/)

@ See Appendix for details.

@ Lots more theorems to help you construct new kernels from old...
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Details on New Kernels from Old J
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Additive Closure

@ Suppose ki and ky are psd kernels with feature maps ¢1 and ¢, respectively.
@ Then
ki (x,x") + ka(x,x")

is a psd kernel.

@ Proof: Concatenate the feature vectors to get

G (x) = (p1(x), p2(x)).

Then ¢ is a feature map for ki + ko.

" David S. Rosenberg (Bloomberg ML EDU) October 26, 2017

66 /70



Closure under Positive Scaling

@ Suppose k is a psd kernel with feature maps ¢.
@ Then for any o >0,
ok
is a psd kernel.
@ Proof: Note that
d(x) = Vad(x)

is a feature map for ock.
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Scalar Function Gives a Kernel

@ For any function f(x),
k(x,x") = f(x)f(x")

is a kernel.

@ Proof: Let f(x) be the feature mapping. (It maps into a 1-dimensional feature space.)

<f(x),f(x')> =f(x)f(x") = k(x,x).
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Closure under Hadamard Products

@ Suppose ki and ky are psd kernels with feature maps ¢1 and ¢, respectively.
@ Then
ki(x,x" ko (x,x")

is a psd kernel.

@ Proof: Take the outer product of the feature vectors:

d(x) = b1(x) [a(x)] 7.

Note that ¢(x) is a matrix.
o Continued...
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Closure under Hadamard Products

@ Then

(d(x), b(x")) = D d(x)(x')
iJj

= 3 [e1x) 20| [010) [92x] "]

— ij ij
1)

= Z [b1(x)]; [2(x)]; [b1(x")]; [¢2(X/)L-

1J

= (Z [p1(x)]; [¢1(X/)],> (Z [d2(x)]; [Cbz(xl)]j)

i J

= ki(x,x ke (x,x)
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