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Estimating a Probability Distribution: Setting

Let p(y) represent a probability distribution on Y.

p(y) is unknown and we want to estimate it.

Assume that p(y) is either a

e probability density function on a continuous space Y, or a
e probability mass function on a discrete space Y.

Typical Y's:
o Y=R; Y =R [typical continuous distributions]
o Y={—1,1} [e.g. binary classification]
Y={0,1,2,...,K} [e.g. multiclass problem]
e Y={0,1,2,3,4...} [unbounded counts]
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Evaluating a Probability Distribution Estimate

o Before we talk about estimation, let's talk about evaluation.

@ Somebody gives us an estimate of the probability distribution

ply).

@ How can we evaluate how good it is?
@ We want p(y) to be descriptive of future data.
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Likelihood of a Predicted Distribution

@ Suppose we have
D=(y1,..., yn) sampled i.i.d. from true distribution p(y).

@ Then the likelihood of p for the data D is defined to be
p(D) =T Tp).
i=1

o If pis a probability mass function, then likelihood is probability.
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Parametric Models

Definition

A parametric model is a set of probability distributions indexed by a parameter 6 € ©. We
denote this as

{p(y;0)]0 0B},

where 0 is the parameter and © is the parameter space.

@ Below we'll give some examples of common parametric models.
o But it's worth doing research to find a parametric model most appropriate for your data.

o We'll sometimes say family of distributions for a probability model.
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Poisson Family

@ Support Y={0,1,2,3,...}.
@ Parameter space: (A€ R|A >0}
@ Probability mass function on k € Y:

p(k;A) =Ake ™/ (k)

Figure is "Poisson pmf" by Skbkekas - Own work. Licensed under CC BY 3.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Poisson_pmf.svg#/media/File:Poisson_pmf.svg.
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Beta Family

e Support Y =(0,1). [The unit interval.] 25
@ Parameter space: {0 = (o,B) ] o, p >0}
@ Probability density function on y € Y:
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Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons.

~ David 5. Rosenberg (Bloomberg ML EDU) November 0, 2017 9/ 10


https://en.wikipedia.org/wiki/File:Beta_distribution_pdf.svg

Gamma Family

@ Support Y =(0,00). [Positive real numbers]
@ Parameter space: {0 = (k,0)| k> 0,0 >0}

@ Probability density function on y € Y:

ply;k,0) =

I(k)ok

Figure from Wikipedia https://commons.wikimedia.org/wiki/File:Gamma_distribution_pdf.svg.
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Likelihood in a Parametric Model

Suppose we have a parametric model {p(y;0) |6 € ©} and a sample D ={y, ..., Yt

o The likelihood of parameter estimate 6 € © for sample D is

0) = HP(}/i: 8)
im1

@ In practice, we prefer to work with the log-likelihood. Same maximum but

log p(D; 6) Zlogp vi; 0),

and sums are easier to work with than products.
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Maximum Likelihood Estimation

Definition
The maximum likelihood estimator (MLE) for 0 in the model {p(y,0) |6 € B} is

~n

6 = argmaxlogp(D,6)

0cO
n
= argmax Y logp(y;;0).
e )_log ol
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Maximum Likelihood Estimation

@ Finding the MLE is an optimization problem.
@ For some model families, calculus gives a closed form for the MLE.

e Can also use numerical methods we know (e.g. SGD).
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MLE Existence

@ In certain situations, the MLE may not exist.

@ But there is usually a good reason for this.

e.g. Gaussian family {N(u,0?)|p€R, 0 >0}

We have a single observation y.
Is there an MLE?

Taking w=y and 02 — 0 drives likelihood to infinity.
MLE doesn't exist.
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Example: MLE for Poisson

@ Observed counts D = (kq, ..., k,) for taxi cab pickups over n weeks.
o k; is number of pickups at Penn Station Mon, 7-8pm, for week i.

@ We want to fit a Poisson distribution to this data.

@ The Poisson log-likelihood for a single count is

k ,—A
log [p(k;A)] = |og[}\ :I ]

= klogA—A—log (k')

o The full log-likelihood is

logp(D,A) = Z [kilogA—A—log (ki)].
i=1
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Example: MLE for Poisson

@ The full log-likelihood is

n

logp(D,A) = ) [kilogh—A—log (k;!)]
i=1

o First order condition gives

0 ki
0= 2 llogp(D,\)] = Z[——l]

— A = 1Zk,-

@ So MLE A is just the mean of the counts.
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Test Set Log Likelihood for Penn Station, Mon-Fri 7-8pm

| Method | Test Log-Likelihood |
Poisson —392.16
Negative Binomial —188.67
Histogram (Bin width = 7) —00
95% Histogram +.05 NegBin —203.89
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Estimating Distributions, Overfitting, and Hypothesis Spaces

@ Just as in classification and regression, MLE can overfit!
o Example Probability Models:

o F ={Poisson distributions}.

o F ={Negative binomial distributions}.

o F =({Histogram with 10 bins}

o F ={Histogram with bin for every y € Y} [will likely overfit for continuous data]

@ How to judge which model works the best?
@ Choose the model with the highest likelihood on validation set.
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