Maximum Likelihood Estimation

David S. Rosenberg

Bloomberg ML EDU

November 9, 2017
Likelihood of an Estimated Probability Distribution
Estimating a Probability Distribution: Setting

- Let \(p(y) \) represent a probability distribution on \(Y \).
- \(p(y) \) is unknown and we want to estimate it.
- Assume that \(p(y) \) is either a
 - probability density function on a continuous space \(Y \), or a
 - probability mass function on a discrete space \(Y \).
- Typical \(Y \)'s:
 - \(Y = \mathbb{R}; \ y = \mathbb{R}^d \) [typical continuous distributions]
 - \(Y = \{-1, 1\} \) [e.g. binary classification]
 - \(Y = \{0, 1, 2, \ldots, K\} \) [e.g. multiclass problem]
 - \(Y = \{0, 1, 2, 3, 4\ldots\} \) [unbounded counts]
Before we talk about estimation, let’s talk about evaluation.

Somebody gives us an estimate of the probability distribution $\hat{p}(y)$.

How can we evaluate how good it is?

We want $\hat{p}(y)$ to be descriptive of future data.
Likelihood of a Predicted Distribution

- Suppose we have

\[\mathcal{D} = (y_1, \ldots, y_n) \] sampled i.i.d. from true distribution \(p(y) \).

- Then the **likelihood** of \(\hat{p} \) for the data \(\mathcal{D} \) is defined to be

\[\hat{p}(\mathcal{D}) = \prod_{i=1}^{n} \hat{p}(y_i). \]

- If \(\hat{p} \) is a probability mass function, then likelihood is probability.
Parametric Families of Distributions
Parametric Models

Definition

A parametric model is a set of probability distributions indexed by a parameter $\theta \in \Theta$. We denote this as

$$\{p(y; \theta) \mid \theta \in \Theta\},$$

where θ is the parameter and Θ is the parameter space.

- Below we’ll give some examples of common parametric models.
 - But it’s worth doing research to find a parametric model most appropriate for your data.
- We’ll sometimes say family of distributions for a probability model.
Poisson Family

- Support $\mathcal{Y} = \{0, 1, 2, 3, \ldots\}$.
- Parameter space: $\{\lambda \in \mathbb{R} \mid \lambda > 0\}$
- Probability mass function on $k \in \mathcal{Y}$:

$$p(k; \lambda) = \frac{\lambda^k e^{-\lambda}}{(k!)}$$

Figure is "Poisson pmf" by Skbkekas - Own work. Licensed under CC BY 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Poisson_pmf.svg#/media/File:Poisson_pmf.svg.
Beta Family

- Support $y = (0, 1)$. [The unit interval.]
- Parameter space: $\{\theta = (\alpha, \beta) \mid \alpha, \beta > 0\}$
- Probability density function on $y \in Y$:

$$p(y; a, b) = \frac{y^{\alpha-1}(1 - y)^{\beta-1}}{B(\alpha, \beta)}$$
Gamma Family

- Support $y = (0, \infty)$. [Positive real numbers]
- Parameter space: $\{ \theta = (k, \theta) \mid k > 0, \theta > 0 \}$
- Probability density function on $y \in Y$:
 \[
p(y; k, \theta) = \frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-y/\theta}.
 \]
Maximum Likelihood Estimation
Likelihood in a Parametric Model

Suppose we have a parametric model \(\{ p(y; \theta) \mid \theta \in \Theta \} \) and a sample \(\mathcal{D} = \{y_1, \ldots, y_n\} \).

- The **likelihood** of parameter estimate \(\hat{\theta} \in \Theta \) for sample \(\mathcal{D} \) is
 \[
 p(\mathcal{D}; \hat{\theta}) = \prod_{i=1}^{n} p(y_i; \hat{\theta}).
 \]

- In practice, we prefer to work with the **log-likelihood**. Same maximum but
 \[
 \log p(\mathcal{D}; \hat{\theta}) = \sum_{i=1}^{n} \log p(y_i; \theta),
 \]
 and sums are easier to work with than products.
Maximum Likelihood Estimation

Definition

The maximum likelihood estimator (MLE) for \(\theta \) in the model \(\{ p(y, \theta) \mid \theta \in \Theta \} \) is

\[
\hat{\theta} = \arg\max_{\theta \in \Theta} \log p(D, \hat{\theta})
\]

\[
= \arg\max_{\theta \in \Theta} \sum_{i=1}^{n} \log p(y_i; \theta).
\]
Maximum Likelihood Estimation

- Finding the MLE is an optimization problem.
- For some model families, calculus gives a closed form for the MLE.
- Can also use numerical methods we know (e.g. SGD).
In certain situations, the MLE may not exist.
But there is usually a good reason for this.

e.g. Gaussian family \(\mathcal{N}(\mu, \sigma^2) \mid \mu \in \mathbb{R}, \sigma^2 > 0 \)
We have a single observation \(y \).
Is there an MLE?

Taking \(\mu = y \) and \(\sigma^2 \to 0 \) drives likelihood to infinity.
MLE doesn’t exist.
Example: MLE for Poisson

- Observed counts $\mathcal{D} = (k_1, \ldots, k_n)$ for taxi cab pickups over n weeks.
 - k_i is number of pickups at Penn Station Mon, 7-8pm, for week i.
- We want to fit a Poisson distribution to this data.
- The Poisson log-likelihood for a single count is
 \[
 \log [p(k; \lambda)] = \log \left[\frac{\lambda^k e^{-\lambda}}{k!} \right] = k \log \lambda - \lambda - \log (k!)
 \]
- The full log-likelihood is
 \[
 \log p(\mathcal{D}, \lambda) = \sum_{i=1}^{n} [k_i \log \lambda - \lambda - \log (k_i!)]
 \]
Example: MLE for Poisson

- The full log-likelihood is

$$\log p(D, \lambda) = \sum_{i=1}^{n} [k_i \log \lambda - \lambda - \log (k_i!)]$$

- First order condition gives

$$0 = \frac{\partial}{\partial \lambda} [\log p(D, \lambda)] = \sum_{i=1}^{n} \left[\frac{k_i}{\lambda} - 1 \right]$$

$$\implies \lambda = \frac{1}{n} \sum_{i=1}^{n} k_i$$

- So MLE $\hat{\lambda}$ is just the mean of the counts.
<table>
<thead>
<tr>
<th>Method</th>
<th>Test Log-Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson</td>
<td>-392.16</td>
</tr>
<tr>
<td>Negative Binomial</td>
<td>-188.67</td>
</tr>
<tr>
<td>Histogram (Bin width = 7)</td>
<td>$-\infty$</td>
</tr>
<tr>
<td>95% Histogram +.05 NegBin</td>
<td>-203.89</td>
</tr>
</tbody>
</table>
Just as in classification and regression, MLE can overfit!

Example Probability Models:

- $\mathcal{F} = \{\text{Poisson distributions}\}$.
- $\mathcal{F} = \{\text{Negative binomial distributions}\}$.
- $\mathcal{F} = \{\text{Histogram with 10 bins}\}$
- $\mathcal{F} = \{\text{Histogram with bin for every } y \in \mathcal{Y}\}$ [will likely overfit for continuous data]

How to judge which model works the best?

Choose the model with the highest likelihood on validation set.