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Linear Probabilistic Models vs GLMs

Today we'll be talking about linear probabilistic models.

@ Most books and software libraries related to this topic are actually about
o generalized linear models (GLMs).

@ GLMs are a special case of what we're talking about today.

@ They're “special’ because

o they're a restriction of our setting, but more importantly

e we can state theorems for GLMs, and

o all GLMs can be implemented in essentially the same way.
@ However, a full development of GLMs requires a fair bit of additional machinery.
@ | don't believe the machinery is worth the payoff at this level.
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Generalized Regression / Conditional Distribution Estimation

e Given x, predict probability distribution p(y | x)

@ How do we represent the probability distribution?
e We'll consider parametric families of distributions.
o distribution represented by parameter vector

@ Examples:

@ Logistic regression (Bernoulli distribution)

@ Probit regression (Bernoulli distribution)

© Poisson regression (Poisson distribution)

@ Linear regression (Normal distribution, fixed variance)

© Generalized Linear Models (GLM) (encompasses all of the above)
O Generalized Additive Models (GAM)

@ Gradient Boosting Machines (GBM) / AnyBoost [in a few weeks]
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Probabilistic Binary Classifiers

Setting: X =R, Y={0,1}

For each x, need to predict a distribution on Y ={0, 1}.

How can we define a distribution supported on {0,1}7
Sufficient to specify the Bernoulli parameter 8 = p(y =1).

We can refer to this distribution as Bernoulli(0).
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Linear Probabilistic Classifiers

@ Setting: X = R, Yy={0,1}
e Want prediction function to map each x € R? to the right 6 € [0, 1].
o We first extract information from x € R? and summarize in a single number.
e That number is analogous to the score in classification.
@ For a linear method, this extraction is done with a linear function:
x —wlx
< =~
€Rd €R

@ As usual, x — w ' x will include affine functions if we include a constant feature in x.
o w'x is called the linear predictor.

@ Still need to map this to [0, 1].
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The Transfer Function

@ Need a function to map the linear predictor in R to [0, 1]:

x —wlixe flwix)=0,
< =
ERd €R €[0,1]

where f: R — [0,1]. We'll call f the transfer function.
@ So prediction function is x — f(w " x), which gives value for 8 = p(y =1 x).

Terminology Alert

In generalized linear models (GLMs), if 0 is the distribution mean, then f is called the
response function or inverse link function. Transfer function is not standard
terminology, but we're avoiding the heavy set of definitions needed for a full development of
GLMs, which is actually more restrictive than our current framework.
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Transfer Functions for Bernoulli

e Two commonly used transfer functions to map from w’x to ©:

1.00 -
0.75-
Y
0.50 - === | ogistic Function
=== Normal CDF
0.25-
0.00 -
-50 -25 00 25 50
Linear(x)
@ Logistic function: f(n) = H% = Logistic Regression
2 . .
e Normal CDF f(n) = f’lw#e*X /2 — Probit Regression
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Learning

e X =R

e Y=1{01}

e A =10,1] (Representing Bernoulli(0) distributions by 6 € [0,1])

o H={x—f(w'x)|weR?} (Each prediction function represented by w € R9.)

@ We can choose w using maximum likelihood...
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Bernoulli Regression: Likelihood Scoring

@ Suppose we have data D ={(x1,y1),..., (Xm ¥n)}-
o Compute the model likelihood for D:

pw(D) = ] ]pwlyilx) [by independence]
i=1

= H [f(WTx,-)]yi [l—f(WTx;)]l_yi.

i=1

@ Huh? Remember y; €{0,1}.

o Easier to work with the log-likelihood:
n
log pw (D) = Z.yi log f(w' x;)+ (1—y;) log [1— (w7 ;)]
i=1
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Bernoulli Regression: MLE

Maximum Likelihood Estimation (MLE) finds w maximizing log py, (D).

Equivalently, minimize the negative log-likelihood objective function
Jw) == yilogf(wTx)+(1—y)log [1—F(w x)]
i=1

o For differentiable f,
e J(w) is differentiable, and we can use our standard tools.

Homework: Derive the SGD step directions for logistic regression and [harder] probit
regression.
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Poisson Regression: Setup

Input space X = RY, Output space Y =1{0,1,2,3,4,...}
In Poisson regression, prediction functions produce a Poisson distribution.
o Represent Poisson(A) distribution by the mean parameter A € (0, 00).

Action space A = (0, 00)

In Poisson regression, x enters linearly: x — w'x— A= f(w'x).
~~—~ ~——
R (0,00)
What can we use as the transfer function f : R — (0,00)?
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Poisson Regression: Transfer Function

@ In Poisson regression, x enters linearly:

x> wlixsA=f(wx).
~— ———
R (0,00)

@ Standard approach is to take

flwTx)=exp (WTX) )

o Note that range of f(w'x) € (0,00), (appropriate for the Poisson parameter).
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Poisson Regression: Likelihood Scoring

@ Suppose we have data D ={(x1,y1),..., (Xn ¥n)}-
o Recall the log-likelihood for Poisson, allowing different A; for each i:

n

logp(D,A) = > lyilogAi—A;—log (y;!)]
i=1
e Plugging in A; = f(w'x;) :exp(WTx,-) we get

n

logp(D;w) = Z [y,-log [exp (WTX,-)] —exp (WTX,') —log (y,-!)]
i=1

= Z[y,-wa,-—exp(WTXi)—|0g(yl'!)]
i—1

@ Maximize this w.r.t. w to get our Poisson regression fit.

@ No closed form for optimum, but it's concave, so easy to optimize.
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Conditional Gaussian Regression J
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Gaussian Linear Regression

@ Input space X = RY, Output space Yy =R
o In Gaussian regression, prediction functions produce a distribution N(y, 02).
e Assume o2 is known.
@ Represent N(p, 02) by the mean parameter L € R.
@ Action space A =R
o In Gaussian linear regression, x enters linearly: x — w'x+— pu=f(w'x).
T

Since pu € R, we can take the identity link function: f(w'x)=wTx.
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Gaussian Regression: Likelihood Scoring

Suppose we have data D ={(x1,y1),..., (Xn, ¥n)}
Compute the model likelihood for D:

pw(D) =] [ pwlyi| x) [by independence]
i=1

Maximum Likelihood Estimation (MLE) finds w maximizing p, (D).

Equivalently, maximize the data log-likelihood:

n
w* =arg maxZ|Ong(}/i | xi)
weRd iy

@ Let's start solving this!
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Gaussian Regression: MLE

@ The conditional log-likelihood is:

n
D logpw(yil xi)
i—1

. 1 (yi—wTx)?
= Zlog[cﬁexp<—y 52 )]

] £ ()

independent of w

e MLE is the w where this is maximized.
o Note that o2 is irrelevant to finding the maximizing w.
o Can drop the negative sign and make it a minimization problem.
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Gaussian Regression: MLE

@ The MLE is

w* =arg minZ(y; —w'x;)?

weRd i=1

o This is exactly the objective function for least squares.

e From here, can use usual approaches to solve for w* (SGD, linear algebra, calculus, etc.)
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Multinomial Logistic Regression J
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Multinomial Logistic Regression

@ Setting: X = RY, Y={1,... k)

@ For each x, we want to produce a distribution on k classes.

Such a distribution is called a “multinoulli” or “categorical” distribution.

Represent categorical distribution by probability vector 6 = (81, ...,0,) € RX:
° Zf-‘zl 0;=1and 6; >0fori=1,...,k (i.e. O represents a distribution) and
SoVye{l,... .k}, ply) =0,.
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Multinomial Logistic Regression

@ From each x, we compute a linear score function for each class:
x = ((wr,x), ..., (wg,x)) € R,

for parameter vectors wy, ..., Wy € R,
@ We need to map this R¥ vector into a probability vector.
@ Use the softmax function:

wi, X)Wy, x 0= eXp(Wl ) o eXp(WkTX) )
({wi,x) (Wi, x)) = (Zk 1eXp(W,T ) Zk lexp(W,Tx)

o Note that 8 € R and
0, > 0 i=1,..k
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Multinomial Logistic Regression

Putting this together, we write multinomial logistic regression as

exp (WyTX)
S iyexp(wx)

where we've introduced parameter vectors wy, ..., wx € R9.

ply | x)=

Do we still see score functions in here?

Can view x WyTX as the score for class y, for y €{1,..., k}.

How do we do learning here? What parameters are we estimatimg?
Our model is specified once we have wy, ..., wx € RY.

Find parameter settings maximizing the log-likelihood of data D.

This objective function is concave in w's and straightforward to optimize.
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Maximum Likelihood as ERM J
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Conditional Probability Modeling as Statistical Learning

Input space X

Outcome space Y

All pairs (x,y) are independent with distribution Py xy.

Action space A ={p(y) | p is a probability density or mass function on Y}.

Hypothesis space F contains prediction functions f : X — A.
e Given an x € X, predict a probability distribution p(y) on Y.

Maximum likelihood estimation for dataset D = ((x1,y1),..., (Xn, yn) is

fuLe = argmax ) _log [f () (y7)]
e =

Exercise
Write the MLE optimization as empirical risk minimization. What's the loss? J
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Conditional Probability Modeling as Statistical Learning

o Take loss £: A xY — R for a predicted PDF or PMF p(y) and outcome y to be

t(p,y) = —logp(y)
@ The risk of decision function f: X — A is
R(f)=—Ey, log[f(x)(y)],

where f(x) is a PDF or PMF on Y, and we're evaluating it on y.
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Conditional Probability Modeling as Statistical Learning

@ The empirical risk of f for a sample D ={y1,..., Yl €Y is
RH=—13 loglf(xl )
= ne oglLriXi)i\yil-

This is called the negative conditional log-likelihood.

@ Thus for the negative log-likelihood loss, ERM and MLE are equivalent
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