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Classical Statistics
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Parametric Family of Densities

A parametric family of densities is a set

{p(y | θ) : θ ∈Θ} ,

where p(y | θ) is a density on a sample space Y, and
θ is a parameter in a [finite dimensional] parameter space Θ.

This is the common starting point for a treatment of classical or Bayesian statistics.
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Density vs Mass Functions

In this lecture, whenever we say “density”, we could replace it with “mass function.”

Corresponding integrals would be replaced by summations.

(In more advanced, measure-theoretic treatments, they are each considered densities w.r.t.
different base measures.)
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Frequentist or “Classical” Statistics

Parametric family of densities
{p(y | θ) | θ ∈Θ} .

Assume that p(y | θ) governs the world we are observing, for some θ ∈Θ.
If we knew the right θ ∈Θ, there would be no need for statistics.
Instead of θ, we have data D: y1, . . . ,yn sampled i.i.d. p(y | θ).
Statistics is about how to get by with D in place of θ.
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Point Estimation

One type of statistical problem is point estimation.
A statistic s = s(D) is any function of the data.
A statistic θ̂= θ̂(D) taking values in Θ is a point estimator of θ.

A good point estimator will have θ̂≈ θ.
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Desirable Properties of Point Estimators

Desirable statistical properties of point estimators:

Consistency: As data size n→∞, we get θ̂n→ θ.

Efficiency: (Roughly speaking) θ̂n is as accurate as we can get from a sample of size n.

e.g. Maximum likelihood estimators are consistent and efficient under reasonable
conditions.
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The Likelihood Function

For parametric family {p(y | θ) : θ ∈Θ} and i.i.d. sample D= (y1, . . . ,yn).
The density for sample D for θ ∈Θ is

p(D | θ) =

n∏
i=1

p(yi | θ).

p(D | θ) is a function of D and θ.
For fixed θ, p(D | θ) is a density function on Yn.
For fixed D, the function θ 7→ p(D | θ) is called the likelihood function:

LD(θ) := p(D | θ).
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Maximum Likelihood Estimation

Definition
The maximum likelihood estimator (MLE) for θ in the model {p(y ,θ) | θ ∈Θ} is

θ̂MLE = argmax
θ∈Θ

LD(θ).

Maximum likelihood is just one approach to getting a point estimator for θ.
Method of moments is another general approach one learns about in statistics.
Later we’ll talk about MAP and posterior mean as approaches to point estimation.

These arise naturally in Bayesian settings.
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Coin Flipping: Setup

Parametric family of mass functions:

p(Heads | θ) = θ,

for θ ∈Θ= (0,1).

Note that every θ ∈Θ gives us a different probability model for a coin.
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Coin Flipping: Likelihood function

Data D= (H,H,T ,T ,T ,T ,T ,H, . . . ,T )

nh: number of heads
nt : number of tails

Likelihood function for data D:

LD(θ) = p(D | θ) = θnh (1−θ)nt

(probability of getting the flips in the order they were received)
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Coin Flipping: MLE

As usual, easier to maximize the log-likelihood function:

θ̂MLE = argmax
θ∈Θ

logLD(θ)

= argmax
θ∈Θ

[nh logθ+nt log(1−θ)]

First order condition:

nh
θ

−
nt

1−θ
= 0

⇐⇒ θ =
nh

nh+nt
.

So θ̂MLE is the empirical fraction of heads.
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Bayesian Statistics: Introduction

David S. Rosenberg (Bloomberg ML EDU) ML 101 November 16, 2017 13 / 37



Bayesian Statistics

Introduces a new ingredient: the prior distribution.
A prior distribution p(θ) is a distribution on parameter space Θ.
A prior reflects our belief about θ, before seeing any data..
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A Bayesian Model

A Bayesian model consists of two pieces:
1 a parametric family of densities

{p(D | θ) | θ ∈Θ}
2 A prior distribution p(θ) on parameter space Θ.

Putting pieces together, we get a joint density on θ and D:

p(D,θ) = p(D | θ)p(θ).
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The Posterior Distribution

The posterior distribution for θ is p(θ | D).
Prior represents belief about θ before observing data D.
Posterior represents the rationally “updated” beliefs after seeing D.
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Expressing the Posterior Distribution

By Bayes rule, can write the posterior distribution as

p(θ | D) =
p(D | θ)p(θ)

p(D)
.

Let’s consider both sides as functions of θ for fixed D.
Then both sides are densities on Θ and we can write

p(θ | D)︸ ︷︷ ︸
posterior

∝ p(D | θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

.

Where ∝ means we’ve dropped factors independent of θ.
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Coin Flipping: Bayesian Model

Parametric family of mass functions:

p(Heads | θ) = θ,

for θ ∈Θ= (0,1).

Need a prior distribution p(θ) on Θ= (0,1).

A distribution from the Beta family will do the trick...
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Coin Flipping: Beta Prior

Prior:

θ ∼ Beta(α,β)
p(θ) ∝ θα−1 (1−θ)β−1

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons
http://commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg.
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Coin Flipping: Beta Prior

Prior:

θ ∼ Beta(h, t)
p(θ) ∝ θh−1 (1−θ)t−1

Mean of Beta distribution:
Eθ=

h

h+ t

Mode of Beta distribution:

argmax
θ

p(θ) =
h−1

h+ t−2

for h, t > 1.
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Coin Flipping: Posterior

Prior:

θ ∼ Beta(h, t)
p(θ) ∝ θh−1 (1−θ)t−1

Likelihood model:
p(D | θ) = θnh (1−θ)nt

Posterior density:

p(θ | D) ∝ p(θ)p(D | θ)

∝ θh−1 (1−θ)t−1×θnh (1−θ)nt

= θh−1+nh (1−θ)t−1+nt
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Posterior is Beta

Prior:

θ ∼ Beta(h, t)
p(θ) ∝ θh−1 (1−θ)t−1

Posterior density:

p(θ | D) ∝ θh−1+nh (1−θ)t−1+nt

Posterior is in the beta family:

θ | D ∼ Beta(h+nh, t+nt)

Interpretation:
Prior initializes our counts with h heads and t tails.
Posterior increments counts by observed nh and nt .
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Sidebar: Conjugate Priors

Interesting that posterior is in same distribution family as prior.
Let π be a family of prior distributions on Θ.
Let P parametric family of distributions with parameter space Θ.

Definition
A family of distributions π is conjugate to parametric model P if for any prior in π, the
posterior is always in π.

The beta family is conjugate to the coin-flipping (i.e. Bernoulli) model.
The family of all probability distributions is conjugate to any parametric model. [Trvially]
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Example: Coin Flipping - Concrete Example

Suppose we have a coin, possibly biased (parametric probability model):

p(Heads | θ) = θ.

Parameter space θ ∈Θ= [0,1].
Prior distribution: θ ∼ Beta(2,2).
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Example: Coin Flipping

Next, we gather some data D= {H,H,T ,T ,T ,T ,T ,H, . . . ,T }:

Heads: 75 Tails: 60
θ̂MLE = 75

75+60 ≈ 0.556

Posterior distribution: θ | D ∼ Beta(77,62):
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Bayesian Point Estimates

So we have posterior θ | D...
But we want a point estimate θ̂ for θ.
Common options:

posterior mean θ̂= E [θ | D]

maximum a posteriori (MAP) estimate θ̂= argmaxθ p(θ | D)

Note: this is the mode of the posterior distribution
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What else can we do with a posterior?

Look at it.
Extract “credible set” for θ (a Bayesian confidence interval).

e.g. Interval [a,b] is a 95% credible set if

P(θ ∈ [a,b] | D)> 0.95

The most “Bayesian” approach is Bayesian decision theory:
Choose a loss function.
Find action minimizing expected risk w.r.t. posterior
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Bayesian Decision Theory
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Bayesian Decision Theory

Ingredients:
Parameter space Θ.
Prior: Distribution p(θ) on Θ.
Action space A.
Loss function: ` :A×Θ→ R.

The posterior risk of an action a ∈A is

r(a) := E [`(θ,a) | D]

=

∫
`(θ,a)p(θ | D)dθ.

It’s the expected loss under the posterior.

A Bayes action a∗ is an action that minimizes posterior risk:

r(a∗) = min
a∈A

r(a)
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Bayesian Point Estimation

General Setup:
Data D generated by p(y | θ), for unknown θ ∈Θ.
Want to produce a point estimate for θ.

Choose the following:

Loss `(θ̂,θ) =
(
θ− θ̂

)2

Prior p(θ) on Θ.

Find action θ̂ ∈Θ that minimizes posterior risk:

r(θ̂) = E
[(
θ− θ̂

)2
| D

]
=

∫ (
θ− θ̂

)2
p(θ | D)dθ
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Bayesian Point Estimation: Square Loss

Find action θ̂ ∈Θ that minimizes posterior risk

r(θ̂) =

∫ (
θ− θ̂

)2
p(θ | D)dθ.

Differentiate:

dr(θ̂)

d θ̂
= −

∫
2
(
θ− θ̂

)
p(θ | D)dθ

= −2
∫
θp(θ | D)dθ+2θ̂

∫
p(θ | D)dθ︸ ︷︷ ︸

=1

= −2
∫
θp(θ | D)dθ+2θ̂
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Bayesian Point Estimation: Square Loss

Derivative of posterior risk is

dr(θ̂)

d θ̂
=−2

∫
θp(θ | D)dθ+2θ̂.

First order condition dr(θ̂)

dθ̂
= 0 gives

θ̂ =

∫
θp(θ | D)dθ

= E [θ | D]

Bayes action for square loss is the posterior mean.
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Bayesian Point Estimation: Absolute Loss

Loss: `(θ, θ̂) =
∣∣∣θ− θ̂∣∣∣

Bayes action for absolute loss is the posterior median.
That is, the median of the distribution p(θ | D).
Show with approach similar to what was used in Homework #1.
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Bayesian Point Estimation: Zero-One Loss

Suppose Θ is discrete (e.g. Θ= {english, french})
Zero-one loss: `(θ, θ̂) = 1(θ 6= θ̂)
Posterior risk:

r(θ̂) = E
[
1(θ 6= θ̂) | D

]
= P

(
θ 6= θ̂ | D

)
= 1−P

(
θ= θ̂ | D

)
= 1−p(θ̂ | D)

Bayes action is

θ̂ = argmax
θ∈Θ

p(θ | D)

This θ̂ is called the maximum a posteriori (MAP) estimate.
The MAP estimate is the mode of the posterior distribution.
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Summary
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Recap and Interpretation

Prior represents belief about θ before observing data D.
Posterior represents the rationally “updated” beliefs after seeing D.
All inferences and action-taking are based on the posterior distribution.
In the Bayesian approach,

No issue of “choosing a procedure” or justifying an estimator.
Only choices are the prior and the likelihood model.
For decision making, need a loss function.
Everything after that is computation.
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The Bayesian Method

1 Define the model:
Choose a parametric family of densities:

{p(D | θ) | θ ∈Θ} .

Choose a distribution p(θ) on Θ, called the prior distribution.
2 After observing D, compute the posterior distribution p(θ | D).
3 Choose action based on p(θ | D).
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