Bayesian Regression

David S. Rosenberg

Bloomberg ML EDU

November 16, 2017

Recap: Conditional Probability Models

Parametric Family of Conditional Densities

• A parametric family of conditional densities is a set

 $\{p(y \mid x, \theta) : \theta \in \Theta\},\$

- where $p(y | x, \theta)$ is a density on **outcome space** \mathcal{Y} for each x in **input space** \mathcal{X} , and
- θ is a **parameter** in a [finite dimensional] **parameter space** Θ .
- This is the common starting point for a treatment of classical or Bayesian statistics.

- In this lecture, whenever we say "density", we could replace it with "mass function."
- Corresponding integrals would be replaced by summations.
- (In more advanced, measure-theoretic treatments, they are each considered densities w.r.t. different base measures.)

• A parametric family of conditional densities:

 $\{p(y \mid x, \theta) : \theta \in \Theta\}$

- Assume that $p(y | x, \theta)$ governs the world we are observing, for some $\theta \in \Theta$.
- If we knew the right $\theta\in\Theta,$ there would be no need for statistics.
- Instead of θ , we have data \mathcal{D} ... how is it generated?

- **Data:** Suppose we have *n* inputs $x_1, \ldots, x_n \in \mathcal{X}$.
 - For now, x can be chosen randomly, by hand, or adversarially.
 - Our entire development will consider x's fixed and known.
- For each input x_i , we observe y_i sampled randomly from $p(y | x_i, \theta)$.
- We assume the outcomes y_1, \ldots, y_n are independent. (Once we know the x's.)

Likelihood Function

- **Data:** $\mathcal{D} = (y_1, ..., y_n)$
- $\bullet\,$ The probability density for our data ${\mathcal D}$ is

$$p(\mathcal{D} | x_1, \ldots, x_n, \theta) = \prod_{i=1}^n p(y_i | x_i, \theta).$$

• For fixed \mathcal{D} , the function $\theta \mapsto p(\mathcal{D} \mid x, \theta)$ is the likelihood function:

 $L_{\mathcal{D}}(\theta)$

• The maximum likelihood estimator (MLE) for θ in the model $\{p(y | x, \theta) | \theta \in \Theta\}$ is

$$\hat{\theta}_{\mathsf{MLE}} = \underset{\substack{\theta \in \Theta}}{\operatorname{arg\,max}} L_{\mathcal{D}}(\theta).$$

Example: Gaussian Linear Regression

- Input space $\mathfrak{X} = \mathbf{R}^d$ Outcome space $\mathfrak{Y} = \mathbf{R}$
- Family of conditional probability densities:

$$y \mid x, w \sim \mathcal{N}\left(w^{T}x, \sigma^{2}\right)$$
,

for some known $\sigma^2>0.$

- Parameter space? R^d .
- **Data:** $\mathcal{D} = (y_1, \ldots, y_n)$
- Assume y_i 's are conditionally independent, given x_i 's and w.

Gaussian Likelihood and MLE

• The likelihood of $w \in \mathbf{R}^d$ for the data \mathcal{D} is given by the likelihood function:

$$L_{\mathcal{D}}(w) = \prod_{i=1}^{n} p(y_i | x_i, w) \quad \text{by conditional independence.}$$
$$= \prod_{i=1}^{n} \left[\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2}\right) \right]$$

 \bullet You should see in your $head^1$ that the MLE is

$$\hat{w}_{\text{MLE}} = \arg \max_{w \in \mathbf{R}^d} L_{\mathcal{D}}(w)$$
$$= \arg \min_{w \in \mathbf{R}^d} \sum_{i=1}^n (y_i - w^T x_i)^2.$$

¹See https://davidrosenberg.github.io/ml2015/docs/8.Lab.glm.pdf, slide 5.

Bayesian Conditional Probability Models

Bayesian Conditional Models

- Input space $\mathfrak{X} = \mathbf{R}^d$ Outcome space $\mathfrak{Y} = \mathbf{R}$
- Two components to Bayesian conditional model:
 - A parametric family of conditional densities:

 $\{p(y \mid x, \theta) : \theta \in \Theta\}$

- A prior distribution for $\theta \in \Theta$.
- Prior distribution: $p(\theta)$ on $\theta \in \Theta$

• The posterior distribution for $\boldsymbol{\theta}$ is

$$p(\theta \mid \mathcal{D}, x_1, \dots, x_n) \propto p(\mathcal{D} \mid \theta, x_1, \dots, x_n) p(\theta)$$
$$= \underbrace{L_{\mathcal{D}}(\theta)}_{\text{likelihood prior}} \underbrace{p(\theta)}_{\text{prior}}$$

Gaussian Example: Priors and Posteriors

• Choose a Gaussian prior distribution p(w) on \mathbf{R}^d :

 $w \sim \mathcal{N}(0, \Sigma_0)$

for some covariance matrix $\Sigma_0 \succ 0$ (i.e. Σ_0 is spd).

Posterior distribution

$$p(w \mid \mathcal{D}, x_1, \dots, x_n) = p(w \mid \mathcal{D}, x_1, \dots, x_n)$$

$$\propto L_{\mathcal{D}}(w)p(w)$$

$$= \prod_{i=1}^n \left[\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2}\right) \right] \text{ (likelihood)}$$

$$\times |2\pi\Sigma_0|^{-1/2} \exp\left(-\frac{1}{2}w^T\Sigma_0^{-1}w\right) \text{ (prior)}$$

Predictive Distributions

• We have a parametric family of conditional densities:

 $\{p(y \mid x, \theta) : \theta \in \Theta\}$

- Each $p(y | x, \theta)$ is a conditional density, but also a prediction function:
 - For $x \in \mathfrak{X}$, the action produced is a probability density on y.
- In Bayesian statistics we have two distributions on Θ :
 - the prior distribution $p(\theta)$
 - the posterior distribution $p(\theta \mid \mathcal{D}, x_1, \dots, x_n)$.
- Each distribution on Θ induces a distributions over prediction functions.
- For any give x, this gives a single distribution on y.
- This distribution is called a predictive distribution.
- So we can have a prior predictive distribution and a posterior predictive distribution.

Gaussian Regression Example

Example in 1-Dimension: Setup

- Input space $\mathfrak{X} = [-1,1]$ Output space $\mathfrak{Y} = \mathbf{R}$
- Given x, the world generates y as

$$y = w_0 + w_1 x + \varepsilon,$$

where $\varepsilon \sim \mathcal{N}(0, 0.2^2)$.

• Written another way, the conditional probability model is

$$y \mid x, w_0, w_1 \sim \mathcal{N}(w_0 + w_1 x, 0.2^2).$$

- What's the parameter space? \mathbf{R}^2 .
- Prior distribution: $w = (w_0, w_1) \sim \mathcal{N}(0, \frac{1}{2}I)$

Example in 1-Dimension: Prior Situation

• Prior distribution: $w = (w_0, w_1) \sim \mathcal{N}\left(0, \frac{1}{2}I\right)$ (Illustrated on left)

• On right, $y(x) = \mathbb{E}[y | x, w] = w_0 + w_1 x$, for randomly chosen $w \sim p(w) = \mathcal{N}(0, \frac{1}{2}I)$.

Bishop's PRML Fig 3.7

Example in 1-Dimension: 1 Observation

- On left: posterior distribution; white '+' indicates true parameters
- On right: blue circle indicates the training observation

Bishop's PRML Fig 3.7

Example in 1-Dimension: 2 and 20 Observations

Bishop's PRML Fig 3.7

Gaussian Regression Continued

Closed Form for Posterior

• Model:

$$w \sim \mathcal{N}(0, \Sigma_0)$$

 $y_i \mid x, w$ i.i.d. $\mathcal{N}(w^T x_i, \sigma^2)$

- Design matrix X Response column vector y
- Posterior distribution is a Gaussian distribution:

$$w \mid \mathcal{D} \sim \mathcal{N}(\mu_{P}, \Sigma_{P})$$

$$\mu_{P} = (X^{T}X + \sigma^{2}\Sigma_{0}^{-1})^{-1}X^{T}y$$

$$\Sigma_{P} = (\sigma^{-2}X^{T}X + \Sigma_{0}^{-1})^{-1}$$

• Posterior Variance Σ_P gives us a natural uncertainty measure.

See Rasmussen and Williams' Gaussian Processes for Machine Learning, Ch 2.1. http://www.gaussianprocess.org/gpml/chapters/RW2.pdf

Closed Form for Posterior

• Posterior distribution is a Gaussian distribution:

$$w \mid \mathcal{D} \sim \mathcal{N}(\mu_{P}, \Sigma_{P})$$

$$\mu_{P} = (X^{T}X + \sigma^{2}\Sigma_{0}^{-1})^{-1}X^{T}y$$

$$\Sigma_{P} = (\sigma^{-2}X^{T}X + \Sigma_{0}^{-1})^{-1}$$

• The MAP estimator and the posterior mean are given by

$$\mu_P = \left(X^T X + \sigma^2 \Sigma_0^{-1}\right)^{-1} X^T y$$

• For the prior variance $\Sigma_0 = \frac{\sigma^2}{\lambda} I$, we get

$$\mu_P = \left(X^T X + \lambda I\right)^{-1} X^T y,$$

which is of course the ridge regression solution.

Posterior Variance vs. Traditional Uncertainty

- Traditional regression: OLS estimator (also the MLE) is a random variable why?
 - $\bullet\,$ Because estimator is a function of data ${\mathfrak D}$ and data is random.
- Common assumption: data are iid with Gaussian noise: $y = w^T x + \varepsilon$, with $\varepsilon \sim \mathcal{N}(0, \sigma^2)$.
- Then OLS estimator \hat{w} has a sampling distribution that is Gaussian with mean w and

$$\operatorname{Cov}(\hat{w}) = \left(\sigma^{-2} X^{\mathsf{T}} X\right)^{-1}$$

• By comparison, the posterior variance is

$$\Sigma_P = \left(\sigma^{-2}X^TX + \Sigma_0^{-1}\right)^{-1}.$$

- When we take $\Sigma_0^{-1} = 0$, we get back $Cov(\hat{\theta})$ (i.e. like our prior variance goes to ∞ .)
- Σ_P is "smaller" than $\operatorname{Cov}(\hat{w})$ because we're using a "more informative" prior.

Posterior Mean and Posterior Mode (MAP)

• Posterior density for $\Sigma_0 = \frac{\sigma^2}{\lambda} I$:

• To find MAP, sufficient to minimize the negative log posterior:

$$\hat{w}_{\mathsf{MAP}} = \underset{w \in \mathbf{R}^{d}}{\operatorname{arg\,min}} \begin{bmatrix} -\log p(w \mid \mathcal{D}) \end{bmatrix}$$
$$= \underset{w \in \mathbf{R}^{d}}{\operatorname{arg\,min}} \underbrace{\sum_{i=1}^{n} (y_{i} - w^{T} x_{i})^{2}}_{\operatorname{log-likelihood}} + \underbrace{\lambda \|w\|^{2}}_{\operatorname{log-prior}}$$

• Which is the ridge regression objective.

- Given a new input point x_{new} , how to predict y_{new} ?
- Predictive distribution

$$p(y_{\text{new}} | x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} | x_{\text{new}}, w, \mathcal{D}) p(w | \mathcal{D}) dw$$
$$= \int p(y_{\text{new}} | x_{\text{new}}, w) p(w | \mathcal{D}) dw$$

• For Gaussian regression, predictive distribution has closed form.

Closed Form for Predictive Distribution

• Model:

$$w \sim \mathcal{N}(0, \Sigma_0)$$

 $y_i \mid x, w$ i.i.d. $\mathcal{N}(w^T x_i, \sigma^2)$

• Predictive Distribution

$$p(y_{\text{new}} | x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} | x_{\text{new}}, w) p(w | \mathcal{D}) dw.$$

Averages over prediction for each w, weighted by posterior distribution.
Closed form:

$$\begin{array}{rcl} y_{new} \mid x_{new}, \mathcal{D} & \sim & \mathcal{N}(\eta_{new}, \sigma_{new}) \\ \eta_{new} & = & \mu_P^T x_{new} \\ \sigma_{new} & = & \underbrace{x_{new}^T \Sigma_P x_{new}}_{\text{from variance in } w} + \underbrace{\sigma^2}_{\text{inherent variance in } y} \end{array}$$

Predictive Distributions

• With predictive distributions, can give mean prediction with error bands:

Rasmussen and Williams' Gaussian Processes for Machine Learning, Fig.2.1(b)