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Recap: Conditional Probability Models
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Parametric Family of Conditional Densities

A parametric family of conditional densities is a set

{p(y | x ,θ) : θ ∈Θ} ,

where p(y | x ,θ) is a density on outcome space Y for each x in input space X, and
θ is a parameter in a [finite dimensional] parameter space Θ.

This is the common starting point for a treatment of classical or Bayesian statistics.
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Density vs Mass Functions

In this lecture, whenever we say “density”, we could replace it with “mass function.”

Corresponding integrals would be replaced by summations.

(In more advanced, measure-theoretic treatments, they are each considered densities w.r.t.
different base measures.)
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Parameters

A parametric family of conditional densities:

{p(y | x ,θ) : θ ∈Θ}

Assume that p(y | x ,θ) governs the world we are observing, for some θ ∈Θ.
If we knew the right θ ∈Θ, there would be no need for statistics.
Instead of θ, we have data D... how is it generated?
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Our Data

Data: Suppose we have n inputs x1, . . . ,xn ∈ X.
For now, x can be chosen randomly, by hand, or adversarially.
Our entire development will consider x ’s fixed and known.

For each input xi , we observe yi sampled randomly from p(y | xi ,θ).

We assume the outcomes y1, . . . ,yn are independent. (Once we know the x ’s.)
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Likelihood Function

Data: D= (y1, . . . , ,yn)

The probability density for our data D is

p(D | x1, . . . ,xn,θ) =

n∏
i=1

p(yi | xi ,θ).

For fixed D, the function θ 7→ p(D | x ,θ) is the likelihood function:

LD(θ)

The maximum likelihood estimator (MLE) for θ in the model {p(y | x ,θ) | θ ∈Θ} is

θ̂MLE = argmax
θ∈Θ

LD(θ).
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Example: Gaussian Linear Regression

Input space X= Rd Outcome space Y= R
Family of conditional probability densities:

y | x ,w ∼ N
(
wT x ,σ2) ,

for some known σ2 > 0.
Parameter space? Rd .
Data: D= (y1, . . . , ,yn)

Assume yi ’s are conditionally independent, given xi ’s and w .
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Gaussian Likelihood and MLE

The likelihood of w ∈ Rd for the data D is given by the likelihood function:

LD(w) =

n∏
i=1

p(yi | xi ,w) by conditional independence.

=

n∏
i=1

[
1

σ
√
2π

exp
(
−
(yi −wT xi )

2

2σ2

)]
You should see in your head1 that the MLE is

ŵMLE = argmax
w∈Rd

LD(w)

= argmin
w∈Rd

n∑
i=1

(yi −wT xi )
2.

1See https://davidrosenberg.github.io/ml2015/docs/8.Lab.glm.pdf, slide 5.
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Bayesian Conditional Probability Models
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Bayesian Conditional Models

Input space X= Rd Outcome space Y= R

Two components to Bayesian conditional model:
A parametric family of conditional densities:

{p(y | x ,θ) : θ ∈Θ}

A prior distribution for θ ∈Θ.

Prior distribution: p(θ) on θ ∈Θ
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The Posterior Distribution

The posterior distribution for θ is

p(θ | D,x1, . . . ,xn) ∝ p(D | θ,x1, . . . ,xn)p(θ)

= LD(θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior
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Gaussian Example: Priors and Posteriors

Choose a Gaussian prior distribution p(w) on Rd :

w ∼ N (0,Σ0)

for some covariance matrix Σ0 � 0 (i.e. Σ0 is spd).
Posterior distribution

p(w | D,x1, . . . ,xn) = p(w | D,x1, . . . ,xn)

∝ LD(w)p(w)

=

n∏
i=1

[
1

σ
√
2π

exp
(
−
(yi −wT xi )

2

2σ2

)]
(likelihood)

× |2πΣ0|
−1/2 exp

(
−
1
2
wTΣ−1

0 w)

)
(prior)
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Predictive Distributions

We have a parametric family of conditional densities:

{p(y | x ,θ) : θ ∈Θ}

Each p(y | x ,θ) is a conditional density, but also a prediction function:
For x ∈ X, the action produced is a probability density on y .

In Bayesian statistics we have two distributions on Θ:
the prior distribution p(θ)
the posterior distribution p(θ | D,x1, . . . ,xn).

Each distribution on Θ induces a distributions over prediction functions.
For any give x , this gives a single distribution on y .
This distribution is called a predictive distribution.
So we can have a prior predictive distribution and a posterior predictive distribution.
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Gaussian Regression Example
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Example in 1-Dimension: Setup

Input space X= [−1,1] Output space Y= R
Given x , the world generates y as

y = w0+w1x +ε,

where ε ∼ N(0,0.22).
Written another way, the conditional probability model is

y | x ,w0,w1 ∼ N
(
w0+w1x , 0.22) .

What’s the parameter space? R2.
Prior distribution: w = (w0,w1) ∼ N

(
0, 1

2 I
)
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Example in 1-Dimension: Prior Situation

Prior distribution: w = (w0,w1) ∼ N
(
0, 1

2 I
)
(Illustrated on left)

On right, y(x) = E [y | x ,w ] = w0+w1x , for randomly chosen w ∼ p(w) =N
(
0, 1

2 I
)
.

Bishop’s PRML Fig 3.7
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Example in 1-Dimension: 1 Observation

On left: posterior distribution; white ’+’ indicates true parameters
On right: blue circle indicates the training observation

Bishop’s PRML Fig 3.7
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Example in 1-Dimension: 2 and 20 Observations

Bishop’s PRML Fig 3.7
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Gaussian Regression Continued
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Closed Form for Posterior

Model:

w ∼ N (0,Σ0)

yi | x ,w i.i.d. N(wT xi ,σ
2)

Design matrix X Response column vector y
Posterior distribution is a Gaussian distribution:

w | D ∼ N(µP ,ΣP)

µP =
(
XTX +σ2Σ−1

0
)−1

XT y

ΣP =
(
σ−2XTX +Σ−1

0
)−1

Posterior Variance ΣP gives us a natural uncertainty measure.
See Rasmussen and Williams’ Gaussian Processes for Machine Learning, Ch 2.1. http://www.gaussianprocess.org/gpml/chapters/RW2.pdf
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Closed Form for Posterior

Posterior distribution is a Gaussian distribution:

w | D ∼ N(µP ,ΣP)

µP =
(
XTX +σ2Σ−1

0
)−1

XT y

ΣP =
(
σ−2XTX +Σ−1

0
)−1

The MAP estimator and the posterior mean are given by

µP =
(
XTX +σ2Σ−1

0
)−1

XT y

For the prior variance Σ0 =
σ2

λ I , we get

µP =
(
XTX +λI

)−1
XT y ,

which is of course the ridge regression solution.
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Posterior Variance vs. Traditional Uncertainty

Traditional regression: OLS estimator (also the MLE) is a random variable – why?

Because estimator is a function of data D and data is random.

Common assumption: data are iid with Gaussian noise: y = wT x +ε, with ε ∼ N
(
0,σ2

)
.

Then OLS estimator ŵ has a sampling distribution that is Gaussian with mean w and

Cov(ŵ) =
(
σ−2XTX

)−1

By comparison, the posterior variance is

ΣP =
(
σ−2XTX +Σ−1

0
)−1

.

When we take Σ−1
0 = 0, we get back Cov(θ̂) (i.e. like our prior variance goes to ∞. )

ΣP is “smaller” than Cov(ŵ) because we’re using a “more informative” prior.
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Posterior Mean and Posterior Mode (MAP)

Posterior density for Σ0 =
σ2

λ I :

p(w | D) ∝ exp
(
−
λ

2σ2 ‖w‖
2
)

︸ ︷︷ ︸
prior

n∏
i=1

exp
(
−
(yi −wT xi )

2

2σ2

)
︸ ︷︷ ︸

likelihood

To find MAP, sufficient to minimize the negative log posterior:

ŵMAP = argmin
w∈Rd

[− logp(w | D)]

= argmin
w∈Rd

n∑
i=1

(yi −wT xi )
2

︸ ︷︷ ︸
log-likelihood

+λ‖w‖2︸ ︷︷ ︸
log-prior

Which is the ridge regression objective.
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Predictive Distribution

Given a new input point xnew, how to predict ynew ?
Predictive distribution

p(ynew | xnew,D) =

∫
p(ynew | xnew,w ,D)p(w | D)dw

=

∫
p(ynew | xnew,w)p(w | D)dw

For Gaussian regression, predictive distribution has closed form.
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Closed Form for Predictive Distribution

Model:

w ∼ N (0,Σ0)

yi | x ,w i.i.d. N(wT xi ,σ
2)

Predictive Distribution

p(ynew | xnew,D) =

∫
p(ynew | xnew,w)p(w | D)dw .

Averages over prediction for each w , weighted by posterior distribution.
Closed form:

ynew | xnew,D ∼ N (ηnew , σnew)

ηnew = µTP xnew

σnew = xTnewΣPxnew︸ ︷︷ ︸
from variance in w

+ σ2︸︷︷︸
inherent variance in y
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Predictive Distributions

With predictive distributions, can give mean prediction with error bands:

Rasmussen and Williams’ Gaussian Processes for Machine Learning, Fig.2.1(b)
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