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Recap: Conditional Probability Models J
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Parametric Family of Conditional Densities

o A parametric family of conditional densities is a set

{p(y[x,0):0 €0},

e where p(y | x,0) is a density on outcome space Y for each x in input space X, and
e 0 is a parameter in a [finite dimensional] parameter space O.

@ This is the common starting point for a treatment of classical or Bayesian statistics.
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Density vs Mass Functions

@ In this lecture, whenever we say “density”, we could replace it with “mass function.”
o Corresponding integrals would be replaced by summations.

@ (In more advanced, measure-theoretic treatments, they are each considered densities w.r.t.
different base measures.)
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Parameters

@ A parametric family of conditional densities:

{p(y[x,0):0€c06}

@ Assume that p(y | x,0) governs the world we are observing, for some 6 € ©.
o If we knew the right 6 € ©, there would be no need for statistics.

@ Instead of 0, we have data D... how is it generated?
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Our Data

e Data: Suppose we have n inputs x1,...,x, € X.

e For now, x can be chosen randomly, by hand, or adversarially.
e Our entire development will consider x's fixed and known.

@ For each input x;, we observe y; sampled randomly from p(y | x;,0).

@ We assume the outcomes y1,...,y, are independent. (Once we know the x's.)
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Likelihood Function

o Data: D=1(y1,...,,Vn)
@ The probability density for our data D is

n

p(Dlxi,....xs,0) = [ [plyilx.0).
i=1

@ For fixed D, the function 6 — p(D | x,0) is the likelihood function:
L (0)
e The maximum likelihood estimator (MLE) for 0 in the model {p(y |x,0) |0 € B} is

Oue = argmax Ly (0).
0cO

~ David 5. Rosenberg (Bloomberg ML EDU) YIBe Moo e, Sy 2



Example: Gaussian Linear Regression

e Input space X =R¢ Outcome space Y =R

@ Family of conditional probability densities:

ylx,w ~ N(WTX,(Yz),

for some known o2 > 0.
o Parameter space? RY.
e Data: D= (y1,...,,¥n)

@ Assume y;'s are conditionally independent, given x;'s and w.
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Gaussian Likelihood and MLE

o The likelihood of w € R? for the data D is given by the likelihood function:

Lp(w) = Hp(y,- | xj, w) by conditional independence.

T 1 (yi—wT'x)?
- H[U 2TceXp<_ 202 >]

i=1

@ You should see in your head! that the MLE is

WmLe = argmaxLlp(w)
wERY

= argmmg i—w ! x;)?

weRd i=1

1See https://davidrosenberg.github.io/m12015/docs/8.Lab.glm.pdf, slide 5.
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Bayesian Conditional Models

e Input space X =R¢ Outcome space Y =R

@ Two components to Bayesian conditional model:
o A parametric family of conditional densities:

{p(y|x,0):0c06}
e A prior distribution for 0 € ©.

@ Prior distribution: p(6) on 6 € ®

~ David 5. Rosenberg (Bloomberg ML EDU) YIBe ey i, |l 2



The Posterior Distribution

@ The posterior distribution for 0 is

pO1D,x1,....xy) ox p(D|06,x1,...,x,)p(0)
= Lp(0) p(0)
—_——
likelihood prior
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Gaussian Example: Priors and Posteriors

@ Choose a Gaussian prior distribution p(w) on RY:
w~N (0, Xp)

for some covariance matrix Ly > 0 (i.e. Xg is spd).
o Posterior distribution

pw|D,x1,....xn) = pw|D,x1,....xn)
o< Lp(w)p(w)
= H[ . exp(—W)] (likelihood)

Lo 27

1
x |25 71/? exp (—2 WTZal W)) (prior)
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Predictive Distributions

@ We have a parametric family of conditional densities:

{p(y[x,0):0c06}

Each p(y | x,0) is a conditional density, but also a prediction function:
e For x € X, the action produced is a probability density on y.

In Bayesian statistics we have two distributions on ©:

e the prior distribution p(0)
o the posterior distribution p(0 D, x1,...,xs).

Each distribution on © induces a distributions over prediction functions.
For any give x, this gives a single distribution on y.

This distribution is called a predictive distribution.

So we can have a prior predictive distribution and a posterior predictive distribution.
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Gaussian Regression Example J
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Example in 1-Dimension: Setup

Input space X = [—1,1] Output space Y =R

Given x, the world generates y as
y=wy+wix+eg,

where € ~N(0,0.22).

Written another way, the conditional probability model is

}/|X: wo, w1 ~ N(WO+W1X,O.22).

What's the parameter space? RZ.
Prior distribution: w = (wg,wy) ~N (0, %I)
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Example in 1-Dimension: Prior Situation

e Prior distribution: w = (wp, w1) ~ N (0,3/) (lllustrated on left)

prior/posterior data space
Y
0
-1
-1 0 = 1
e On right, y(x) =Ely | x, w] = wg + wyx, for randomly chosen w ~ p(w) =N (0, 3/)
Bishop’'s PRML Fig 3.7
November 16, 2017
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Example in 1-Dimension: 1 Observation

-1 0 qg 1 -1 0z 1

@ On left: posterior distribution; white '+ indicates true parameters

@ On right: blue circle indicates the training observation

Bishop’'s PRML Fig 3.7
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Example in 1-Dimension: 2 and 20 Observations

Y

0 O,
-1

-1 0 =z 1
1
Y

0 o 0%

o
o ©

-1

-1 0 =z 1

Bishop’'s PRML Fig 3.7
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Gaussian Regression Continued J
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Closed Form for Posterior

o Model:
w ~ N(0,%p)
yilx,w iid. N(w'x;, 0?)
@ Design matrix X Response column vector y

o Posterior distribution is a Gaussian distribution:
w|D ~ N(up Zp)
up = (XTX—HTngl)_lXTy
o = (o 2XTX+1h) "

@ Posterior Variance Zp gives us a natural uncertainty measure.

See Rasmussen and Williams' Gaussian Processes for Machine Learning, Ch 2.1. http://www.gaussianprocess.org/gpml/chapters/RW2.pdf
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Closed Form for Posterior

@ Posterior distribution is a Gaussian distribution:
WD ~ N(up,Zp)
up = (XTX+02551) ' XTy
o = (0 2XTX+1h) "

@ The MAP estimator and the posterior mean are given by

up = (XTX+02551) ' XTy

. . 2
@ For the prior variance Lo = 5/, we get

1

up=(XTX+AI) "XTy,

which is of course the ridge regression solution.
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Posterior Variance vs. Traditional Uncertainty

e Traditional regression: OLS estimator (also the MLE) is a random variable — why?

o Because estimator is a function of data D and data is random.

o Common assumption: data are iid with Gaussian noise: y = w'x+¢, with ¢ ~ N (0,0?).

Then OLS estimator w has a sampling distribution that is Gaussian with mean w and
Cov(W) = (c2XTX) ™"

@ By comparison, the posterior variance is

Tp=(02XTX+151) "

When we take Zo_l =0, we get back Cov(8) (i.e. like our prior variance goes to 0. )

Y p is “smaller” than Cov(Ww) because we're using a “more informative” prior.

~ David 5. Rosenberg (Bloomberg ML EDU) YIBe ey o8, | £ 2



Posterior Mean and Posterior Mode (MAP)

o Posterior density for Lo = -1

A R
plw D) o exp (2w )Hp(—%

prior likelihood

e To find MAP, sufficient to minimize the negative log posterior:

wmap = argmin[—logp(w | D)]
weRd
n
= argmin ) (yi—w'x)?+Al|lwl?
~—

weRd i=1 | -
og-prior

log-likelihood
@ Which is the ridge regression objective.
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Predictive Distribution

@ Given a new input point Xpew, how to

@ Predictive distribution

p()’new | Xnew, D) =

predict ynew !

JP(Ynew | Xnew, w, D)p(w [ D)

jp(ynew | sne W)p(w | D) dw

e For Gaussian regression, predictive distribution has closed form.
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Closed Form for Predictive Distribution
o Model:

w ~  N(0,%p)
yilx,w iid. N(w'x;, 0?)
o Predictive Distribution

P(Yrew | Xoews D) = jp(ynew | Xnews w)p(w | D) dw.

o Averages over prediction for each w, weighted by posterior distribution.
@ Closed form:

Ynew | Xnew: D~ N(nner 0—new)

T
Mhew = Hp Xnew
_ T 5 2
Opew = Xnew&~PXnew + \0'/
—_———

from variance in w  inherent variance in y
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Predictive Distributions

@ With predictive distributions, can give mean prediction with error bands:

output, y

input, x

Rasmussen and Williams' Gaussian Processes for Machine Learning, Fig.2.1(b)
November 16, 2017 27 /27

~ David 5. Rosenberg (Bloomberg ML EDU) R



	Recap: Conditional Probability Models
	Bayesian Conditional Probability Models
	Gaussian Regression Example
	Gaussian Regression Continued

