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Multiclass Setting

Input space: X
Ouput space: Y={1,..., k}

@ Our approaches to multiclass problems so far:
e multinomial / softmax logistic regression
e trees and random forests

Today we consider linear methods specifically designed for multiclass.

@ But the main takeaway will be an approach that generalizes to situations where k is
“exponentially large” — too large to enumerate.
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Reduction to Binary Classification J
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One-vs-All / One-vs-Rest

Plot courtesy of David Sontag.
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One-vs-All / One-vs-Rest

Train k binary classifiers, one for each class.

Train jth classifier to distinguish class i from rest

Suppose hi,..., he : X — R are our binary classifiers.
o Can output hard classifications in {—1,1} or scores in R.

Final prediction is

h(x) = argmax h;(x)
iefl,...k}

Ties can be broken arbitrarily.
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Linear Classifers: Binary and Multiclass J
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Linear Binary Classifier Review

Input Space: X =R¢
Output Space: Y ={-1,1}

o Linear classifier score function:

flx) = (w,x)=w'x

Final classification prediction: sign(f(x))

Geometrically, when are sign(f(x)) =+1 and sign(f(x)) =—17
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Linear Binary Classifier Review

X2

X

Suppose ||w| >0 and ||x|| > 0:

flx) = (w,x)=|wll[x] cos®
f(x)>0 <= cosb>0 <= 0¢c(—90°090°)
f(x)<0 <= cosB<0 <= 0¢[-90°90°]
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Three Class Example
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@ Base hypothesis space H = {f(x) =wlx|xe Rz}.
@ Note: Separating boundary always contains the origin.

Example based on Shalev-Schwartz and Ben-David's Understanding Machine Learning, Section 17.1
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Three Class Example: One-vs-Rest
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@ Class 1 vs Rest:
f(x)=w x
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Three Class Example: One-vs-Rest

@ Examine “Class 2 vs Rest”

o Predicts everything to be “Not 2"
o If it predicted some “2", then it would get many more “Not 2" incorrect.
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One-vs-Rest: Predictions

@ Score for class i is
fi(x) = (wi, x) = ||wi]||| x|| cos ©;,
where 0; is the angle between x and w;.
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One-vs-Rest: Class Boundaries

e For simplicity, we've assumed ||w || = [|wa|| = ||ws]].
@ Then ||w;|| and ||x|| are equal for all scores.

= x is classified by whichever has largest cos0; (i.e. 0; closest to 0)
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One-vs-Rest: Class Boundaries
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@ This approach doesn’t work well in this instance.

@ How can we fix this?
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The Linear Multiclass Hypothesis Space

o Base Hypothesis Space: H = {x— w'x|w € R?}.

e Linear Multiclass Hypothesis Space (for k classes):

F= {Xl—>argmaxh;(x) | h,..., hy EZH}

]

@ What's the action space here?
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One-vs-Rest: Class Boundaries
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@ Recall: A learning algorithm chooses the hypothesis from the hypothesis space.
@ Is this a failure of the hypothesis space or the learning algorithm?
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A Solution with Linear Functions
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@ This works... so the problem is not with the hypothesis space.

@ How can we get a solution like this?
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Multiclass Predictors J
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Multiclass Hypothesis Space

e Base Hypothesis Space: H ={h:X — R} (“score functions”).
e Multiclass Hypothesis Space (for k classes):

F= {Xr—>argmaxh;(x) | h,.... hy 65{}

@ hi(x) scores how likely x is to be from class i.

Issue: Need to learn (and represent) k functions. Doesn't scale to very large k.
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Multiclass Hypothesis Space: Reframed

General [Discrete] Output Space: Y (e.g Y ={1,..., k} for multiclass)
New idea: Rather than a score function for each class,

e use one function h(x,y) that gives a compatibility score between input x and output y

Final prediction is the y € Y that is “most compatible” with x:

f(x) = argmaxh(x,y)

y€eY
@ This subsumes the framework with class-specific score functions.
@ Given class-specific score functions hy, ..., hy, we could define compatibility function as

h(x,i) = hi(x), i=1,... k.
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Multiclass Hypothesis Space: Reframed

General [Discrete] Output Space: Y
Base Hypothesis Space: H ={h: X xY — R}

e h(x,y) gives compatibility score between input x and output y

e Multiclass Hypothesis Space

F =< x—argmaxh(x,y)|heH
y€eY

Final prediction function is an f € .

For each f € J there is an underlying compatibility score function h € K.
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Learning in a Multiclass Hypothesis Space: In Words

e Base Hypothesis Space: H ={h: X xY — R}
@ Training data: (x1,y1), (x2,¥2),..., (Xn, ¥n)
@ Learning process chooses h € K.

o Want compatibility h(x,y) to be large when x has label y, small otherwise.
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Learning in a Multiclass Hypothesis Space: In Math

@ h(x,y) classifies (x;,y;) correctly iff

h(xi,yi) > h(xi,y) Yy #yi
@ h should give higher score for correct y than for all other y € Y.
@ An equivalent condition is the following:

h(xi,yi) > maxh(x;, y)
Y#Yi

o If we define

m; = h(x,-,y,-) —;n;fh(xi,}/),

then classification is correct if m; > 0. Generally want m; to be large.

@ Sound familiar?
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A Linear Multiclass Hypothesis Space J
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Linear Multiclass Prediction Function

@ A linear compatibility score function is given by

h(x,y) = (w, ¥(x,y)),
where ¥(x,y): X xY — R? is a compatibility feature map?.
@ Y(x,y) extracts features relevant to how compatible y is with x.
@ Final compatibility score is a linear function of W(x,y).
e Linear Multiclass Hypothesis Space

F={ x> argmax(w,¥(x,y)) | weRY
yeY

L Called “class-sensitive” score function and feature map in our SSBD reference.
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Example: X =R?, Y ={1,2,3}

e Prediction function: (x1,x2) — argmax;c(y 2.3} (Wi, (x1,%2)).

o How can we get this into the form x > argmax, ey (w,¥(x, y))
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The Multivector Construction

@ What if we stack w;'s together:

@ And then do the following: W :R? x{1,2,3} — R® defined by

Y(x,1) = (x1,%,0,0,0,0)
‘P(X,Z) = (0,0,X1,X2,0,0)
Y(x,3) := (0,0,0,0,x1,x0)

@ Then (w,¥(x,y)) = (w,,x), which is what we want.
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NLP Example: Part-of-speech classification

o X ={All possible words}.
e Y={NOUN,VERB,ADJECTIVE,ADVERB,ARTICLE,PREPOSITION}.
o Features of x € X: [The word itself], ENDS IN ly, ENDS IN ness, ...

o Y(x,y) =(Wilx,y), balx,y), b3(x,y),.... halx,y)):
= 1

(x = apple AND y = NOUN)
= 1(x=run AND y =NOUN)
= 1(x=run AND y =VERB)
= 1(x ENDS _IN Iy AND y =ADVERB)

@ eg. Y(x=run,y=NOUN)=(0,1,0,0,...)

o After training, what would you guess corresponding wy, wy, ws, wy to be?
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NLP Example: How does it work?

o W(x,y) = (W1(x,y), b2(x, ), ¥3(x,y), ..., ba(x,y)) € RY:
‘“P1(x,y) = 1(x=apple AND y =NOUN)
Ps(x,y) = 1(x=run AND y =NOUN)

o After training, we've learned w € R?. Say w = (5,—3,1,4,...)
o To predict label for x = apple,
e we compute compatibility scores for each y € Y:
(w,¥(apple, NOUN))
(w,¥(apple, VERB))
(w,¥(apple, ADVERB))

@ Predict class that gives highest score.
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Another Approach: Use Label Features

What if we have a very large number of classes?
Make features for the classes.

Common in advertising

o X: User and user context
e Y: A large set of banner ads

Suppose user x is shown many banner ads.

We want to predict which one the user will click on.

Possible compatibility features:

P1(x,y) = 1(x interested in sports AND y relevant to sports)
Pa(x,y) = 1(xisin target demographic group of y)

P3(x,y) = 1(x previously clicked on ad from company sponsoring y)
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Linear Multiclass SVM J
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The Margin for Multiclass

@ Let h: X xY — R be our compatibility score function.

@ Define a “margin” between correct class and each other class:

Definition

The [class-specific] margin of score function h on the ith example (x;,y;) for class y is

mj,(h) = h(x;,yi) —h(xi,y).

e Want m; ,(h) to be large and positive for all y # y;.
@ For our linear hypothesis space, margin is

miy(w) = (w,¥(x;,yi)) —(w,¥(x;, y))
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Multiclass SVM with Hinge Loss

@ Recall binary SVM (without bias term):

. 1 2 C 1 T
min —||lw||“+ — max | 0,1—y;w’ Xx;
min w2 T,
= margin
e Multiclass SVM (Version 1):

1 ¢ o
min =|lwl?+=Y max[max(0,1—m;,(w))]
weRd 2 n;y#y; ( iy (W)

where m;  (w) = (w,¥(x;, yi)) — (w,¥(x;, y)).
@ As in SVM, we've taken the value 1 as our “target margin” for each i/, y.
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Class-Sensitive Loss

In multiclass, some misclassifications may be worse than others.

Rather than 0/1 Loss, we may be interested in a more general loss

A:YxA—[0,00)

We can use this A as our target margin for multiclass SVM.
Multiclass SVM (Version 2):

1.5 c -
SIwlP+= 0, Alyi,y) —m
Jmin SlIwll+— 2 max [max (0, Alyj, y) = mi,y (w))]

If margin m; , (w) meets or exceeds its target A(y;,y) Vy # yj, then no loss on example i.

Note: If A(y,y) =0 Vy €Y, then we can replace max,,, with max,.
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Interlude: Is This Worth The Hassle Compared to One-vs-All? J
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Recap: What Have We Got?

@ Problem: Multiclass classification Y ={1,..., k}

@ Solution 1; One-vs-All

e Train k models: hi(x),..., hx(x): X — R.
o Predict with argmax,,cy hy (x).
o Gave simple example where this fails for linear classifiers

@ Solution 2: Multiclass

e Train one model: h(x,y): X xY — R.
o Prediction involves solving argmax, ¢y h(x, y).
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Does it work better in practice?

e Paper by Rifkin & Klautau: “In Defense of One-Vs-All Classification” (2004)
o Extensive experiments, carefully done
o albeit on relatively small UCI datasets

e Suggests one-vs-all works just as well in practice

@ (or at least, the advantages claimed by earlier papers for multiclass methods were not
compelling)

@ Compared

o many multiclass frameworks (including the one we discuss)
e one-vs-all for SVMs with RBF kernel
o one-vs-all for square loss with RBF kernel (for classification!)

@ All performed roughly the same
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Why Are We Bothering with Multiclass?

@ The framework we have developed for multiclass
e compatibility features / score functions

e multiclass margin
o target margin

@ Generalizes to situations where k is very large and one-vs-all is intractable.

e Key point is that we can generalize across outputs y by using features of y.
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Introduction to Structured Prediction J
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Part-of-speech (POS) Tagging

@ Given a sentence, give a part of speech tag for each word:

x | [START] He eats | apples
N—— ~~ | ~——

X0 *1 x2 X3
y | [START] | Pronoun | Verb | Noun
—— |~ | —~—~

Yo y1 y2 3

V ={all English words} U{[START],"."}
P ={START, Pronoun,Verb,Noun,Adjective}
X=V", n=1,23,... [Word sequences of any length]

ML 101

Y=P" n=1,2,3,...[Part of speech sequence of any length]
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Structured Prediction

@ A structured prediction problem is a multiclass problem in which Y is very large, but has

(or we assume it has) a certain structure.

e For POS tagging, Y grows exponentially in the length of the sentence.

@ Typical structure assumption: The POS labels form a Markov chain.

e ie Vnr1!|V¥m¥Yn-1.--..¥0 is the same as y 11| yp.
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Local Feature Functions: Type 1

@ A “type 1" local feature only depends on

o the label at a single position, say y; (label of the ith word) and
e x at any position

o Example:
$1(i,x,y;) = 1(x; =runs)1(y; = Verb)
$2(i,x,yi) = 1(x; =runs)1(y; = Noun)
$3(i,x,yi) = 1(xi—1=He)l(x; =runs)1(y; = Verb)
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Local Feature Functions: Type 2

@ A “type 2" local feature only depends on
o the labels at 2 consecutive positions: y; 1 and y;

e x at any position

o Example:

01(i,x,yi—1,¥i) = 1(yi—1 = Pronoun)1(y; = Verb)
02(i,x,¥i-1,¥i) = 1(yi—1 = Pronoun)1(y; = Noun)
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Local Feature Vector and Compatibility Score

@ At each position i in sequence, define the local feature vector:

Yilx,yi—1.yi) = (d1li,x, i), d2(i, x, yi), ...,
010/, x,¥i—1,¥), 020/, x, yi—1,yi),-..)

e Local compatibility score for (x,y) at position i is (w,¥;(x,yi—1,¥i)).
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Sequence Compatibility Score

@ The compatibility score for the pair of sequences (x,y) is the sum of the local
compatibility scores:

D> (W Yilx,yio1, 1)

i

— <W,Z‘Pi(xy}/i—1,)/i)>
= (w,¥(x,y)),

where we define the sequence feature vector by

Yix,y) =) Yilx.yi1.).

@ So we see this is a special case of linear multiclass prediction.
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Sequence Target Loss

@ How do we assess the loss for prediction sequence y’ for example (x,y)?

@ Hamming loss is common:

lyl
Z )/17&)/1
=1

o Could generalize this as
lyl

.y |Zé y,,y,
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What remains to be done?

To compute predictions, we need to find

argmax(w,¥(x,y)).
y€eY

@ This is straightforward for [Y| small.

Now |Y| is exponentially large.

Because ¥ breaks down into local functions only depending on 2 adjacent labels,

e we can solve this efficiently using dynamic programming.
o (Similar to Viterbi decoding.)

Learning can be done with SGD and a similar dynamic program.
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