Multiclass and Introduction to Structured Prediction

David S. Rosenberg

Bloomberg ML EDU

November 28, 2017
Introduction
Multiclass Setting

- Input space: X
- Output space: $Y = \{1, \ldots, k\}$

Our approaches to multiclass problems so far:
- multinominal / softmax logistic regression
- trees and random forests

Today we consider linear methods specifically designed for multiclass.

But the main takeaway will be an approach that generalizes to situations where k is “exponentially large” – too large to enumerate.
Reduction to Binary Classification
One-vs-All / One-vs-Rest

Plot courtesy of David Sontag.
One-vs-All / One-vs-Rest

- Train k binary classifiers, one for each class.
- Train ith classifier to distinguish class i from rest
- Suppose $h_1, \ldots, h_k : \mathcal{X} \rightarrow \mathbb{R}$ are our binary classifiers.
 - Can output hard classifications in $\{-1, 1\}$ or scores in \mathbb{R}.
- Final prediction is
 $$h(x) = \arg \max_{i \in \{1, \ldots, k\}} h_i(x)$$
- Ties can be broken arbitrarily.
Linear Classifiers: Binary and Multiclass
- Input Space: $\mathcal{X} = \mathbb{R}^d$
- Output Space: $\mathcal{Y} = \{-1, 1\}$

- Linear classifier score function:
 \[f(x) = \langle w, x \rangle = w^T x \]

- Final classification prediction: $\text{sign}(f(x))$
- Geometrically, when are $\text{sign}(f(x)) = +1$ and $\text{sign}(f(x)) = -1$?
Suppose $\|w\| > 0$ and $\|x\| > 0$:

$$f(x) = \langle w, x \rangle = \|w\| \|x\| \cos \theta$$

- $f(x) > 0 \iff \cos \theta > 0 \iff \theta \in (-90^\circ, 90^\circ)$
- $f(x) < 0 \iff \cos \theta < 0 \iff \theta \notin [-90^\circ, 90^\circ]$
Three Class Example

- Base hypothesis space $\mathcal{H} = \{ f(x) = w^T x \mid x \in \mathbb{R}^2 \}$.
- Note: Separating boundary always contains the origin.

Example based on Shalev-Schwartz and Ben-David's *Understanding Machine Learning*, Section 17.1
Three Class Example: One-vs-Rest

Class 1 vs Rest:

\[f_1(x) = w_1^T x \]
Three Class Example: One-vs-Rest

- Examine “Class 2 vs Rest”
 - Predicts everything to be “Not 2”.
 - If it predicted some “2”, then it would get many more “Not 2” incorrect.
One-vs-Rest: Predictions

Score for class i is

$$f_i(x) = \langle w_i, x \rangle = \|w_i\| \|x\| \cos \theta_i,$$

where θ_i is the angle between x and w_i.
One-vs-Rest: Class Boundaries

- For simplicity, we’ve assumed $\|w_1\| = \|w_2\| = \|w_3\|$.
- Then $\|w_i\|$ and $\|x\|$ are equal for all scores.

\Rightarrow x is classified by whichever has largest $\cos \theta_i$ (i.e. θ_i closest to 0)
This approach doesn’t work well in this instance.

How can we fix this?
The Linear Multiclass Hypothesis Space

- **Base Hypothesis Space**: $\mathcal{H} = \{ x \mapsto w^T x \mid w \in \mathbb{R}^d \}$.
- **Linear Multiclass Hypothesis Space** (for k classes):

$$\mathcal{F} = \left\{ x \mapsto \arg \max_i h_i(x) \mid h_1, \ldots, h_k \in \mathcal{H} \right\}$$

- What’s the action space here?
Recall: A **learning algorithm** chooses the hypothesis from the hypothesis space.

Is this a failure of the hypothesis space or the learning algorithm?
This works... so the problem is not with the hypothesis space.

How can we get a solution like this?
Multiclass Predictors
Multiclass Hypothesis Space

- **Base Hypothesis Space**: $\mathcal{H} = \{h : \mathcal{X} \rightarrow \mathbb{R}\}$ (“score functions”).

- **Multiclass Hypothesis Space** (for k classes):

 $$\mathcal{F} = \left\{ x \mapsto \arg\max_i h_i(x) \mid h_1, \ldots, h_k \in \mathcal{H} \right\}$$

- $h_i(x)$ **scores** how likely x is to be from class i.

Issue: Need to learn (and represent) k functions. Doesn’t scale to very large k.
Multiclass Hypothesis Space: Reframed

- **General [Discrete] Output Space:** \(Y \) (e.g. \(Y = \{1, \ldots, k\} \) for multiclass)

- **New idea:** Rather than a score function for each class,
 - use one function \(h(x, y) \) that gives a *compatibility score* between input \(x \) and output \(y \)

- Final *prediction* is the \(y \in Y \) that is “most compatible” with \(x \):

 \[
 f(x) = \arg \max_{y \in Y} h(x, y)
 \]

- This subsumes the framework with class-specific score functions.

- Given class-specific score functions \(h_1, \ldots, h_k \), we could define compatibility function as

 \[
 h(x, i) = h_i(x), \ i = 1, \ldots, k.
 \]
Multiclass Hypothesis Space: Reframed

- **General [Discrete] Output Space:** \mathcal{Y}
- **Base Hypothesis Space:** $\mathcal{H} = \{h : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}\}$
 - $h(x, y)$ gives **compatibility score** between input x and output y
- **Multiclass Hypothesis Space**

$$
\mathcal{F} = \left\{ x \mapsto \arg \max_{y \in \mathcal{Y}} h(x, y) \mid h \in \mathcal{H} \right\}
$$

- Final prediction function is an $f \in \mathcal{F}$.
- For each $f \in \mathcal{F}$ there is an underlying compatibility score function $h \in \mathcal{H}$.
Learning in a Multiclass Hypothesis Space: In Words

- **Base Hypothesis Space:** $\mathcal{H} = \{ h : \mathcal{X} \times Y \rightarrow \mathbb{R} \}$
- Training data: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$
- Learning process chooses $h \in \mathcal{H}$.
- Want compatibility $h(x, y)$ to be large when x has label y, small otherwise.
Learning in a Multiclass Hypothesis Space: In Math

- $h(x, y)$ classifies (x_i, y_i) correctly iff
 \[h(x_i, y_i) > h(x_i, y) \quad \forall y \neq y_i \]

- h should give higher score for correct y than for all other $y \in Y$.
 An equivalent condition is the following:
 \[h(x_i, y_i) > \max_{y \neq y_i} h(x_i, y) \]

- If we define
 \[m_i = h(x_i, y_i) - \max_{y \neq y_i} h(x_i, y), \]
 then classification is correct if $m_i > 0$. Generally want m_i to be large.

- Sound familiar?
A Linear Multiclass Hypothesis Space
A **linear compatibility score function** is given by

\[h(x, y) = \langle w, \Psi(x, y) \rangle, \]

where \(\Psi(x, y) : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^d \) is a compatibility feature map\(^1\). \(\Psi(x, y) \) extracts features relevant to how compatible \(y \) is with \(x \). Final compatibility score is a **linear** function of \(\Psi(x, y) \).

Linear Multiclass Hypothesis Space

\[\mathcal{F} = \left\{ x \mapsto \arg \max_{y \in \mathcal{Y}} \langle w, \Psi(x, y) \rangle \mid w \in \mathbb{R}^d \right\} \]

\(^1\)Called “class-sensitive” score function and feature map in our SSBD reference.
Example: $\mathcal{X} = \mathbb{R}^2$, $\mathcal{Y} = \{1, 2, 3\}$

- $w_1 = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$, $w_2 = (0, 1)$, $w_3 = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$

- Prediction function: $(x_1, x_2) \mapsto \arg \max_{i \in \{1, 2, 3\}} \langle w_i, (x_1, x_2) \rangle$.

- How can we get this into the form $x \mapsto \arg \max_{y \in \mathcal{Y}} \langle w, \Psi(x, y) \rangle$
What if we stack w_i's together:

\[
w = \begin{pmatrix}
\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0, 1, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} \\
0, 1, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}
\end{pmatrix}
\]

And then do the following: $\Psi : \mathbb{R}^2 \times \{1, 2, 3\} \to \mathbb{R}^6$ defined by

\[
\Psi(x, 1) := (x_1, x_2, 0, 0, 0, 0) \\
\Psi(x, 2) := (0, 0, x_1, x_2, 0, 0) \\
\Psi(x, 3) := (0, 0, 0, 0, x_1, x_2)
\]

Then $\langle w, \Psi(x, y) \rangle = \langle w_y, x \rangle$, which is what we want.
NLP Example: Part-of-speech classification

- $\mathcal{X} = \{\text{all possible words}\}$.
- $\mathcal{Y} = \{\text{NOUN, VERB, ADJECTIVE, ADVERB, ARTICLE, PREPOSITION}\}$.
- Features of $x \in \mathcal{X}$: [The word itself], ENDS_IN_ly, ENDS_IN_ness, ...
- $\Psi(x, y) = (\psi_1(x, y), \psi_2(x, y), \psi_3(x, y), \ldots, \psi_d(x, y))$:
 - $\psi_1(x, y) = 1(x = \text{apple AND } y = \text{NOUN})$
 - $\psi_2(x, y) = 1(x = \text{run AND } y = \text{NOUN})$
 - $\psi_3(x, y) = 1(x = \text{run AND } y = \text{VERB})$
 - $\psi_4(x, y) = 1(x \text{ ENDS_IN_ly AND } y = \text{ADVERB})$
 - $\vdots \quad \vdots \quad \vdots$

- e.g. $\Psi(x = \text{run}, y = \text{NOUN}) = (0, 1, 0, 0, \ldots)$
- After training, what would you guess corresponding w_1, w_2, w_3, w_4 to be?
NLP Example: How does it work?

- \(\Psi(x, y) = (\psi_1(x, y), \psi_2(x, y), \psi_3(x, y), \ldots, \psi_d(x, y)) \in \mathbb{R}^d: \)

 \[
 \begin{align*}
 \psi_1(x, y) &= 1(x = \text{apple} \ \text{AND} \ y = \text{NOUN}) \\
 \psi_2(x, y) &= 1(x = \text{run} \ \text{AND} \ y = \text{NOUN}) \\
 \vdots & \ \vdots & \ \vdots \\
 \end{align*}
 \]

- After training, we’ve learned \(w \in \mathbb{R}^d \). Say \(w = (5, -3, 1, 4, \ldots) \)

- To predict label for \(x = \text{apple} \),
 - we compute compatibility scores for each \(y \in Y \):

 \[
 \langle w, \Psi(\text{apple, NOUN}) \rangle \\
 \langle w, \Psi(\text{apple, VERB}) \rangle \\
 \langle w, \Psi(\text{apple, ADVERB}) \rangle \\
 \vdots \\
 \]

- Predict class that gives highest score.
Another Approach: Use Label Features

- What if we have a very large number of classes?
- Make features for the classes.
- Common in advertising
 - X: User and user context
 - Y: A large set of banner ads
- Suppose user x is shown many banner ads.
- We want to predict which one the user will click on.
- Possible compatibility features:

 \[
 \psi_1(x, y) = 1(x \text{ interested in sports AND } y \text{ relevant to sports})
 \]
 \[
 \psi_2(x, y) = 1(x \text{ is in target demographic group of } y)
 \]
 \[
 \psi_3(x, y) = 1(x \text{ previously clicked on ad from company sponsoring } y)
 \]
Linear Multiclass SVM
The Margin for Multiclass

- Let \(h : \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \) be our compatibility score function.
- Define a "margin" between correct class and each other class:

Definition

The [class-specific] **margin** of score function \(h \) on the \(i \)th example \((x_i, y_i)\) for class \(y \) is

\[
m_{i,y}(h) = h(x_i, y_i) - h(x_i, y).
\]

- Want \(m_{i,y}(h) \) to be large and positive for all \(y \neq y_i \).
- For our linear hypothesis space, margin is

\[
m_{i,y}(w) = \langle w, \Psi(x_i, y_i) \rangle - \langle w, \Psi(x_i, y) \rangle
\]
Multiclass SVM with Hinge Loss

- Recall binary SVM (without bias term):

\[
\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2 + \frac{c}{n} \sum_{i=1}^{n} \max \left(0, 1 - y_i w^T x_i \right)
\]

- Multiclass SVM (Version 1):

\[
\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2 + \frac{c}{n} \sum_{i=1}^{n} \max \left[\max \left(0, 1 - m_i, y(w) \right) \right]
\]

where \(m_{i,y}(w) = \langle w, \Psi(x_i, y_i) \rangle - \langle w, \Psi(x_i, y) \rangle \).

- As in SVM, we’ve taken the value 1 as our “target margin” for each \(i, y \).
Class-Sensitive Loss

- In multiclass, some misclassifications may be worse than others.
- Rather than 0/1 Loss, we may be interested in a more general loss

\[\Delta : \mathcal{Y} \times \mathcal{A} \rightarrow [0, \infty) \]

- We can use this \(\Delta \) as our target margin for multiclass SVM.
- Multiclass SVM (Version 2):

\[
\min_{w \in \mathbb{R}^d} \frac{1}{2} ||w||^2 + c \sum_{i=1}^{n} \max_{y \neq y_i} \left[\max(0, \Delta(y_i, y) - m_{i,y}(w)) \right]
\]

- If margin \(m_{i,y}(w) \) meets or exceeds its target \(\Delta(y_i, y) \) \(\forall y \neq y_i \), then no loss on example \(i \).
- Note: If \(\Delta(y, y) = 0 \ \forall y \in \mathcal{Y} \), then we can replace \(\max_{y \neq y_i} \) with \(\max_y \).
Interlude: Is This Worth The Hassle Compared to One-vs-All?
Recap: What Have We Got?

- **Problem**: Multiclass classification $Y = \{1, \ldots, k\}$

- **Solution 1: One-vs-All**
 - Train k models: $h_1(x), \ldots, h_k(x) : \mathcal{X} \to \mathbb{R}$.
 - Predict with $\text{arg max}_{y \in Y} h_y(x)$.
 - Gave simple example where this fails for linear classifiers

- **Solution 2: Multiclass**
 - Train one model: $h(x, y) : \mathcal{X} \times Y \to \mathbb{R}$.
 - Prediction involves solving $\text{arg max}_{y \in Y} h(x, y)$.
Does it work better in practice?

- **Paper by Rifkin & Klautau: “In Defense of One-Vs-All Classification” (2004)**
 - Extensive experiments, carefully done
 - albeit on relatively small UCI datasets
 - Suggests one-vs-all works just as well in practice
 - (or at least, the advantages claimed by earlier papers for multiclass methods were not compelling)

- **Compared**
 - many multiclass frameworks (including the one we discuss)
 - one-vs-all for SVMs with RBF kernel
 - one-vs-all for square loss with RBF kernel (for classification!)

- All performed roughly the same
Why Are We Bothering with Multiclass?

- The framework we have developed for multiclass
 - compatibility features / score functions
 - multiclass margin
 - target margin

- Generalizes to situations where k is very large and one-vs-all is intractable.

- Key point is that we can generalize across outputs y by using features of y.
Introduction to Structured Prediction
Part-of-speech (POS) Tagging

- Given a sentence, give a part of speech tag for each word:

<table>
<thead>
<tr>
<th>x</th>
<th>[START]</th>
<th>He</th>
<th>eats</th>
<th>apples</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_1</td>
<td>He</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>eats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>apples</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>[START]</th>
<th>Pronoun</th>
<th>Verb</th>
<th>Noun</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_0</td>
<td>[START]</td>
<td>Pronoun</td>
<td>Verb</td>
<td>Noun</td>
</tr>
<tr>
<td>y_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $\mathcal{V} = \{\text{all English words}\} \cup \{[\text{START}],",",\}$
- $\mathcal{P} = \{\text{START, Pronoun, Verb, Noun, Adjective}\}$
- $\mathcal{X} = \mathcal{V}^n$, $n = 1, 2, 3, \ldots$ [Word sequences of any length]
- $\mathcal{Y} = \mathcal{P}^n$, $n = 1, 2, 3, \ldots$ [Part of speech sequence of any length]
A **structured prediction** problem is a multiclass problem in which \mathcal{Y} is very large, but has (or we assume it has) a certain structure.

For POS tagging, \mathcal{Y} grows exponentially in the length of the sentence.

Typical structure assumption: The POS labels form a Markov chain.

- i.e. $y_{n+1} | y_n, y_{n-1}, \ldots, y_0$ is the same as $y_{n+1} | y_n$.
Local Feature Functions: Type 1

- A “type 1” local feature only depends on
 - the label at a single position, say y_i (label of the ith word) and
 - x at any position

- Example:

\[
\begin{align*}
\phi_1(i, x, y_i) &= 1(x_i = \text{runs})1(y_i = \text{Verb}) \\
\phi_2(i, x, y_i) &= 1(x_i = \text{runs})1(y_i = \text{Noun}) \\
\phi_3(i, x, y_i) &= 1(x_{i-1} = \text{He})1(x_i = \text{runs})1(y_i = \text{Verb})
\end{align*}
\]
A “type 2” local feature only depends on
- the labels at 2 consecutive positions: y_{i-1} and y_i
- x at any position

Example:

$$\theta_1(i, x, y_{i-1}, y_i) = 1(y_{i-1} = \text{Pronoun})1(y_i = \text{Verb})$$
$$\theta_2(i, x, y_{i-1}, y_i) = 1(y_{i-1} = \text{Pronoun})1(y_i = \text{Noun})$$
At each position i in sequence, define the **local feature vector**:

$$\Psi_i(x, y_{i-1}, y_i) = (\phi_1(i, x, y_i), \phi_2(i, x, y_i), \ldots, \theta_1(i, x, y_{i-1}, y_i), \theta_2(i, x, y_{i-1}, y_i), \ldots)$$

Local compatibility score for (x, y) at position i is $\langle w, \Psi_i(x, y_{i-1}, y_i) \rangle$.
Sequence Compatibility Score

- The **compatibility score** for the pair of sequences \((x, y)\) is the sum of the local compatibility scores:

\[
\sum_i \langle w, \Psi_i(x, y_{i-1}, y_i) \rangle
\]

\[
= \left\langle w, \sum_i \Psi_i(x, y_{i-1}, y_i) \right\rangle
\]

\[
= \langle w, \Psi(x, y) \rangle,
\]

where we define the sequence feature vector by

\[
\Psi(x, y) = \sum_i \Psi_i(x, y_{i-1}, y_i).
\]

- So we see this is a special case of linear multiclass prediction.
How do we assess the loss for prediction sequence y' for example (x, y)?

Hamming loss is common:

$$\Delta(y, y') = \frac{1}{|y|} \sum_{i=1}^{|y|} 1(y_i \neq y'_i)$$

Could generalize this as

$$\Delta(y, y') = \frac{1}{|y|} \sum_{i=1}^{|y|} \delta(y_i, y'_i)$$
To compute predictions, we need to find

$$\arg \max_{y \in \mathcal{Y}} \langle w, \Psi(x, y) \rangle.$$

This is straightforward for $|\mathcal{Y}|$ small.

Now $|\mathcal{Y}|$ is exponentially large.

Because Ψ breaks down into local functions only depending on 2 adjacent labels,
 - we can solve this efficiently using dynamic programming.
 - (Similar to Viterbi decoding.)

Learning can be done with SGD and a similar dynamic program.