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Example: Old Faithful Geyser

Old Faithful Geyser Eruptions
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@ Looks like two clusters.

@ How to find these clusters algorithmically?
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k-Means: By Example

o Standardize the data.

@ Choose two cluster centers.

2

From Bishop's Pattern recognition and machine learning, Figure 9.1(a).
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k-means: by example

@ Assign each point to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(b).
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k-means: by example

@ Compute new class centers.

2

From Bishop’s Pattern recognition and machine learning, Figure 9.1(c).
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k-means: by example

@ Assign points to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(d).
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k-means: by example

o Compute cluster centers.

2

From Bishop’s Pattern recognition and machine learning, Figure 9.1(e).
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k-means: by example

@ lterate until convergence.

2

From Bishop's Pattern recognition and machine learning, Figure 9.1(i).
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k-Means Algorithm: Standardizing the data

o Without standardizing:

Old Faithful Geyser Eruptions
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@ Blue and black show results of k-means clustering

o Wait time dominates the distance metric
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k-Means Algorithm: Standardizing the data

e With standardizing:

Old Faithful Geyser Eruptions
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k-Means: Failure Cases J
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k-Means: Suboptimal Local Minimum

@ The clustering for k =3 below is a local minimum, but suboptimal:
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k-means Formalized J
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k-Means: Setting

Let X be a space with some distance metric d.

o Most commonly, X =R9 and d(x,x’) =[x —x'||.

Dataset D ={xq,...,x,} C X.
Goal: Partition data D into k disjoint sets C,..., C.
The centroid of C; is defined to be

wi=u(C) =argmin > d(x, ).
pex x€C;

Note: For Euclidean distance on RY, u(C;) is the mean of C;.

Based on Shalev-Shwartz and Ben-David's book Understanding Machine Learning, Ch 22.
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k-Means: Objective function

@ The k-means objective is

K
Jkmeans(C1, ..., Ck) = ZZd(x,u(C

i=1xeC

= m|n Zdep.,

i=1xeq;

@ In vector quantization, we represent each x € C; by the centroid ;.
@ We can think of this as lossy data compression,
o the k-means objective can be viewed as the reconstruction error.

@ How many bits does it take to represent each point with vector quantization?

o If k=29 then d bits. (Fewer on average if the clusters have unequal sizes.)
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k-Means: Algorithm

@ input: D={xq,..., x4} C X
@ initialize: Randomly choose initial centroids py,...,ux C D.
@ repeat until convergence (i.e. until the centroids or clusters repeat):

o Vi, let G;={xeD:i=argmin;d(x,1;)}. (break ties in some arbitrary manner)
o Vi, let wj=argmin,cx > cc dlx, u)2. (For Euclidean distance, p; = ﬁerC,- x)
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k-Means++

In k-means, objective never increases, but no guarantee to find minimizer.

General recommendation is to re-run with several random starting initial centroids.

k-means++ is a way to randomly initialize the centroids with some guarantees:

e Randomly choose first centroid from the data points D.
o For each of the remaining k—1 centroids:

o Compute distance from each x; to the closest already chosen centroid.
@ Randomly choose next centroid with probability proportional to the computed distance squared.

o If welet J; ... bethe minimizer of the k-means objective, then using k-means++ for
initialization guarantees that

E [Jk—means(clv sy Ck)] < 8 (Iogk +2) JZ—meanS'
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