
Neural Networks

David S. Rosenberg

Bloomberg ML EDU

December 19, 2017

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 1 / 51

Neural Networks Overview

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 2 / 51

Objectives

What are neural networks?
How do they fit into our toolbox?
When should we consider using them?

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 3 / 51

Linear Prediction Functions

Linear prediction functions: SVM, ridge regression, Lasso
Generate the feature vector φ(x) by hand.
Learn parameter vector w from data.

So for w ∈ R3,
score= wTφ(x)

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 4 / 51

Basic Neural Network (Multilayer Perceptron)

Add an extra layer with hidden nodes h1 and h2:

For parameter vector vi ∈ R3, define

hi = σ
(
vTi φ(x)

)
,

where σ is a nonlinear activation function. (We’ll come back to this.)

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 5 / 51

Basic Neural Network

For parameters w1,w2 ∈ R, score is just

score = w1h1+w2h2

= w1σ(v
T
1 φ(x))+w2σ

(
vT2 φ(x)

)
This is the basic recipe.

We can add more hidden nodes.
We can add more hidden layers. (> 1 hidden layer is a “deep network”.)

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 6 / 51

Activation Functions

The hyperbolic tangent is a common activation function these days:

σ(x) = tanh(x) .

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 7 / 51

Activation Functions

More recently, the rectified linear function has been very popular:

σ(x) =max(0,x).

“ReLU” is much faster to calculate, and to calculate its derivatives.
Also often seems to work better.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 8 / 51

Example: Regression with Multilayer Perceptrons (MLPs)

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 9 / 51

MLP Regression

Input space: X= R
Action Space / Output space: A= Y= R
Hypothesis space: MLPs with a single 3-node hidden layer:

f (x) = w0+w1h1(x)+w2h2(x)+w3h3(x),

where
hi (x) = σ(vix +bi) for i = 1,2,3,

for some fixed nonlinear “activation function” σ : R→ R.

What are the parameters we need to fit?

b1,b2,b3,v1,v2,v3,w0,w1,w2,w3 ∈ R

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 10 / 51

Multilayer Perceptron for f : R→ R

MLP with one hidden layer; σ typically tanh or RELU; x ,h1,h2,h3,ŷ ∈ R.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 11 / 51

Hidden Layer as Feature/Basis Functions

Can think of hi = hi (x) = σ(vix +bi) as a feature of x .
Learned by fitting the parameters vi and bi .

Here are some hi (x)’s for σ= tanh and randomly chosen vi and bi :

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 12 / 51

Samples from the Hypothesis Space

Choosing 6 sets of random settings for b1,b2,b3,v1,v2,v3,w0,w1,w2,w3 ∈ R, we get the
following score functions:

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 13 / 51

How to choose the best hypothesis?

As usual, choose our prediction function using empirical risk minimization.

Our hypothesis space is parameterized by
θ= (b1,b2,b3,v1,v2,v3,w0,w1,w2,w3) ∈Θ= R10.

For a training set (x1,y1), . . . ,(xn,yn), find

θ̂= argmin
θ∈R10

1
n

n∑
i=1

(fθ(xi)− yi)
2 .

Do we have the tools to find θ̂?

Not quite, but close enough...

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 14 / 51

Gradient Methods for MLPs

Note that

f (x) = w0+

3∑
i=1

wihi (x)

= w0+

3∑
i=1

wi tanh(vix +bi)

is differentiable w.r.t. all parameters.

We can use gradient-based methods as usual.

However, the objective function is not convex w.r.t. parameters.

So we can only hope to converge to a local minimum.

In practice, this seems to be good enough.
David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 15 / 51

Approximation Properties of Multilayer Perceptrons

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 16 / 51

Approximation Ability: f (x) = x2

3 hidden units; tanh activation functions
Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 17 / 51

Approximation Ability: f (x) = sin(x)

3 hidden units; logistic activation function
Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 18 / 51

Approximation Ability: f (x) = |x |

3 hidden units; logistic activation functions
Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 19 / 51

Approximation Ability: f (x) = 1(x > 0)

3 hidden units; logistic activation function
Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 20 / 51

Universal Approximation Theorems

Leshno and Schocken (1991) showed:
A neural network with one [possibly huge] hidden layer can uniformly approximate any
continuous function on a compact set iff the activation function is not a polynomial (i.e.
tanh, logistic, and ReLU all work, as do sin,cos, exp, etc.).

In more words:
Let ϕ(·) be any non-polynomial function (an activation function).
Let f : K → R be any continuous function on a compact set K ⊂ Rm.

Then ∀ε > 0, there exists an integer N (the number of hidden units), and parameters
vi ,bi ∈ R and wi ∈ Rm such that the function

F (x) =
N∑
i=1

viϕ(w
T
i x +bi)

satisfies |F (x)− f (x)|< ε for all x ∈ K .

Leshno & Schocken note that this doesn’t work without the bias term bi (they call it
the threshold term). (e.g. consider ϕ= sin: then we always have F (−x) = −F (x))

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 21 / 51

Review: Multinomial Logistic Regression

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 22 / 51

Recall: Multinomial Logistic Regression

Setting: X= Rd , Y= {1, . . . ,k}

For each x , we want to produce a distribution on k classes.

Such a distribution is called a “multinoulli” or “categorical” distribution.

Represent categorical distribution by probability vector θ= (θ1, . . . ,θk) ∈ Rk , where∑k
y=1θy = 1 and θy > 0 for y ∈ {1, . . . ,k}.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 23 / 51

Multinomial Logistic Regression

From each x , we compute a linear score function for each class:

x 7→ (〈w1,x〉 , . . . ,〈wk ,x〉) ∈ Rk

We need to map this Rk vector into a probability vector θ.
The softmax function maps scores s = (s1, . . . ,sk) ∈ Rk to a categorical distribution:

(s1, . . . ,sk) 7→ θ= Softmax(s1, . . . ,sk) =

(
exp(s1)∑k
i=1 exp(si)

, . . . ,
exp(sk)∑k
i=1 exp(si)

)

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 24 / 51

Multinomial Logistic Regression: Learning

Let y ∈ {1, . . . ,k} be an index denoting a class.
Then predicted probability for class y given x is

p̂(y | x) = Softmax(〈w1,x〉 , . . . ,〈wk ,x〉)y ,

where the y subscript indicates taking the y ’th entry of the vector produced Softmax.
Learning: Maximize the log-likelihood of training data

argmax
w1,...,wk∈Rd

n∑
i=1

log
[
Softmax(〈w1,xi 〉 , . . . ,〈wk ,xi 〉)yi

]
.

This objective function is concave in w ’s and straightforward to optimize.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 25 / 51

Standard MLP for Multiclass

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 26 / 51

Nonlinear Generalization of Multinomial Logistic Regression

Key change: Rather than k linear score functions

x 7→ (〈w1,x〉 , . . . ,〈wk ,x〉) ∈ Rk ,

use nonlinear score functions:

x 7→ (f1(x), . . . , fk(x)) ∈ Rk ,

Then predicted probability for class y ∈ {1, . . . ,k} given x is

p̂(y | x) = Softmax(f1(x), . . . , fk(x))y .

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 27 / 51

Nonlinear Generalization of Multinomial Logistic Regression

Learning: Maximize the log-likelihood of training data

argmax
f1,...,fk∈Rd

n∑
i=1

log
[
Softmax(f1(x), . . . , fk(x))yi

]
.

We could use gradient boosting to get fi ’s as ensembles of regression trees.
Today we’ll learn to use a multilayer perceptron for f : Rd → Rk .
Unfortunately, this objective function will not be concave or convex.
But we can still use gradient methods to find a good local optimum.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 28 / 51

Multilayer Perceptron: Standard Recipe

Input space: X= Rd Action space A= Rk (for k-class classification).
Let σ : R→ R be a non-polynomial activation function (e.g. tanh or ReLU).
Let’s take all hidden layers to have m units.
First hidden layer is given by

h(1)(x) = σ
(
W (1)x +b(1)

)
,

for parameters W (1) ∈ Rm×d and b ∈ Rm, and where σ(·) is applied to each entry of its
argument.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 29 / 51

Multilayer Perceptron: Standard Recipe

Each subsequent hidden layer takes the output o ∈ Rm of previous layer and produces

h(j)(o) = σ
(
W (j)o+b(j)

)
, for j = 1, . . . ,D

where W (j) ∈ Rm×m, b(j) ∈ Rm, and D is the number of hidden layers.
Last layer is an affine mapping:

a(o) =W (D+1)o+b(D+1),

where W (D+1) ∈ Rk×m and b(D+1) ∈ Rk .

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 30 / 51

Multilayer Perceptron: Standard Recipe

So the full neural network function is given by the composition of layers:

f (x) =
(
a◦h(D) ◦ · · · ◦h(1)

)
(x)

This gives us the k score functions we need.
To train this we maximize the conditional log-likelihood for the training data:

J(θ) =
1
n

n∑
i=1

log [Softmax(f (xi))yi] ,

where θ=
(
W (1), . . . ,W (D+1),b(1), . . . ,b(D+1)

)
.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 31 / 51

Neural Network Regularization

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 32 / 51

Neural Network Regularization

Neural networks are very expressive.
Correspond to big hypothesis spaces.
Many approaches are used for regularization.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 33 / 51

Tikhonov Regularization? Sure.

Can add an `2 and/or `1 regularization terms to our objective:

J(w ,v) =
n∑

i=1

(yi − fw ,v (xi))
2+λ1‖w‖2+λ2‖v‖2

In neural network literature, this is often called weight decay.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 34 / 51

Regularization by Early Stopping

A particular recipe for early stopping:
As we train, check performance on validation set every once in a while.
Don’t stop immediately after validation error goes back up.
The “patience” parameter: the number of training steps to continue after finding a
minimum of validation error.

Start with patience = 10000.
Whenever we find a minimum at step T ,

Set patience← patience+ cT , for some constant c.
Then run at least patience extra steps before stopping.

See http://arxiv.org/pdf/1206.5533v2.pdf for details.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 35 / 51

http://arxiv.org/pdf/1206.5533v2.pdf

Max-Norm Regularization

Max-norm regularization: Enforce max norm of incoming weight vector at every hidden
node to be bounded:

‖w‖2 6 c.

Project any w that’s too large onto ball of radius c .
It’s like `2-complexity control, but locally at each node.
Why?

There are heuristic justifications, but proof is in the performance.
We’ll see below.

See http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf for details.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 36 / 51

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Dropout for Regularization

A recent trick for improving generalization performance is dropout.
A fixed probability p is chosen.
Before every stochastic gradient step,

each node is selected for “dropout” with probability p
a dropout node is removed, along with its links
after the stochastic gradient step, all nodes are restored.

Figure from http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 37 / 51

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Dropout for Regularization

At prediction time
all nodes are present
outgoing weights are multiplied by p.

Dropout probability set using a validation set, or just set at 0.5.
Closer to 0.8 usually works better for input units.

Figure from http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 38 / 51

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Dropout: Why might this help?

Since any node may randomly disappear,
forced to “spread the knowledge” across the nodes.

Each hidden node only gets a randomly chosen sample of its inputs,
so won’t become too reliant on any single input.
More robust.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 39 / 51

Dropout: Does it help?

Results from MNIST (handwritten digit recognition)

Figure from http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 40 / 51

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

How big a network?

How many hidden units?
Current conventional wisdom:

With proper regularization, too many doesn’t hurt.
Except in computation time.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 41 / 51

Multiple Output Networks

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 42 / 51

Multiple Output Neural Networks

Very easy to add extra outputs to neural network structure.

From Andrew Ng’s CS229 Deep Learning slides (http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 43 / 51

http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf

Multitask Learning

Suppose X= {Natural Images}.
We have two tasks:

Does the image have a cat?
Does the image have a dog?

Can have one output for each task.
Seems plausible that basic pixel features would be shared by tasks.
Learn them on the same neural network – benefit both tasks.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 44 / 51

Single Task with “Extra Tasks”

Only one task we’re interested in.
Gather data from related tasks.
Train them along with the task you’re interested in.
No related tasks? Another trick:

Choose any input feature.
Change it’s value to zero.
Make the prediction problem to predict the value of that feature.
Can help make model more robust (not depending too heavily on any single input).

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 45 / 51

Neural Networks for Features

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 46 / 51

OverFeat: Features

OverFeat is a neural network for image classification
Trained on the huge ImageNet dataset
Lots of computing resources used for training the network.

All those hidden layers of the network are very valuable features.
Paper: “CNN Features off-the-shelf: an Astounding Baseline for Recognition”
Showed that using features from OverFeat makes it easy to achieve state-of-the-art
performance on new vision tasks.

OverFeat code is at https://github.com/sermanet/OverFeat

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 47 / 51

https://github.com/sermanet/OverFeat

Neural Networks: When and why?

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 48 / 51

Neural Networks Benefit from Big Data

From Andrew Ng’s CS229 Deep Learning slides (http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 49 / 51

http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf

Big Data Requires Big Resources

Best results always involve GPU processing.
Typically on huge networks.

From Andrew Ng’s CS229 Deep Learning slides (http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf)

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 50 / 51

http://cs229.stanford.edu/materials/CS229-DeepLearning.pdf

Neural Networks: When to Use?

Computer vision problems
All state of the art methods use neural networks

Speech recognition
All state of the art methods use neural networks

Natural Language problems
Maybe. State-of-the-art, but not as large a margin.
Check out “word2vec” https://code.google.com/p/word2vec/.
Represents words using real-valued vectors.

Potentially much better than bag of words.

David S. Rosenberg (Bloomberg ML EDU) ML 101 December 19, 2017 51 / 51

https://code.google.com/p/word2vec/

	Neural Networks Overview
	Example: Regression with Multilayer Perceptrons (MLPs)
	Approximation Properties of Multilayer Perceptrons
	Review: Multinomial Logistic Regression
	Standard MLP for Multiclass
	Neural Network Regularization
	Multiple Output Networks
	Neural Networks for Features
	Neural Networks: When and why?

