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Learning with Back-Propagation

@ Back-propagation is an algorithm for computing the gradient
@ With lots of chain rule, you could also work out the gradient by hand.
@ Back-propagation is

e a clean way to organize the computation of the gradient

e an efficient way to compute the gradient
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Partial Derivatives

e Consider a function g:RP — R".

@ Typical computation graph:
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@ Broken out into components:
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Partial Derivatives

e Consider a function g:RP — R".

a, b
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o Partial derivative gg{

J
rate of change of b; as we change a;.

is the instantaneous

o If we change a; slightly to a; +35,

@ Then (for small ), b; changes to

approximately b; + SSf 5.
J

ML 101 December 19, 2017

4/21



Partial Derivatives of an Affine Function

@ Define the affine function g(x) = Mx+c¢, for M € R"™P and c € R.

a

j b, o If we let b= g(a), then what is b;?
%2 ‘DZ, @ b; depends on the ith row of M:
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@ So for an an affine mapping, entries of
matrix M directly tell us the rates of

change.
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Chain Rule (in terms of partial derivatives)
@ g:RP >R"and f:R" — R™. Let b=g(a). Let c =f(b).

@ Chain rule says that
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e Change in a; may change each of by, ..., by.
@ Changes in by,..., b, may each effect ¢;.

@ Chain rule tells us that, to first order, the net change in ¢; is
o the sum of the changes induced along each path from a; to ¢;.
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Example: Least Squares Regression J
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Review: Linear least squares

Hypothesis space {f(x) =wlx+b|lweR9 be R}.

e Data set (x1,y1),-.., (Xn yn) € R x R.
@ Define )
€i(w,b) = [(WTXH—b) —y,-] }
@ In SGD, in each round we'd choose a random index i € 1,..., n and take a gradient step
0¢;(w, b) _
w, +— wj—n————— forj=1,...,d
J J aWJ
ae,'(W,b)
b b—n——,
N>

for some step size 1 > 0.

@ Let's revisit how to calculate these partial derivatives...
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Computation Graph and Intermediate Variables

@ For a generic training point (x, y), denote the loss by
Uw, b) = [(WTX+b) —y]z.

@ Let's break this down into some intermediate computations:

r]lzramﬁrj Tam‘ﬂg Ob']ed‘wﬁ
° W
(prediction) y = ZWJ'XJ-—Fb
YD) 4D
(residual) r = y—yp
(loss) £ = r? *

Trainin ol Ex;?que
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Partial Derivatives on Computation Graph

o We'll work our way from graph output £ back to the parameters w and b:

W a—e = 2r
i e . S S
b o) ®, e ot _ OO o1 = —2r
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2 - Y (=2
N b apop (2=
ot ol 39
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Example: Ridge Regression J
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Ridge Regression: Computation Graph and Intermediate Variables

@ For training point (x, y), the {>-regularized objective function is
J(w,b) = [(wTx+b)—y]* +AwTw.

@ Let's break this down into some intermediate computations:

A

d (Bvama'evs
(prediction) y = Z wjxj+ b W
j=1 L
(residual) r = y—y
(loss) ¢ = r? x 9
(regularization) R = Aw’w _ﬁainina Example

(objective) J = {+R
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Partial Derivatives on Computation Graph

o We'll work our way from graph output £ back to the parameters w and b:
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Handling Nodes with Multiple Children

e Consider a+ J = h(f(a),g(a)).

Y O=x
TS K

e It's helpful to think about having two independent copies of a, call them a1} and a?)...
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Handling Nodes with Multiple Children

o _ 3 0aM dJ 22"
da  dall) da  0al® 0a
oJ  dJ

320 33

@ Derivative w.r.t. ais the sum of derivatives w.r.t. each copy of a.
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Partial Derivatives on Computation Graph

o We'll work our way from graph output £ back to the parameters w and b:
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General Backpropagation J
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Backpropagation: Overview

@ Backpropagation is a specific way to evaluate the partial derivatives of a computation
graph output J w.r.t. the inputs and outputs of all nodes.
o Backpropagation works node-by-node.
@ To run a “backward” step at a node f, we assume
o we've already run “backward” for all of f's children.
e Backward at node f:a+> b returns
o Partial of objective value J w.r.t. f's output: %

o Partial of objective value J w.r.t f's input: %
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Backpropagation: Simple Case

@ Simple case: all nodes take a single scalar as input and have a single scalar output.

e Backprop for node f:

. _oJ 2J
o Input: S5 3N

(Partials w.r.t. inputs to all children)

e Output:
[V i 2J
- 3pk)
0b Pt db(k)
o _ aJob
da  0boa
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Backpropagation (General case)

@ More generally, consider f: RY — R".
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e Input:

e Output:

a.(l i =
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Running Backpropagation

o If we run “"backward” on every node in our graph,
o we'll have the gradients of J w.r.t. all our parameters.

To run backward on a particular node,
e we assumed we already ran it on all children.

A topological sort of the nodes in a directed [acyclic] graph
e is an ordering which every node appears before its children.

So we'll evaluate backward on nodes in a reverse topological ordering.
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