Backpropagation and the Chain Rule

David S. Rosenberg

Bloomberg ML EDU

December 19, 2017
Learning with Back-Propagation

- Back-propagation is an **algorithm** for computing the gradient.
- With lots of chain rule, you could also work out the gradient by hand.
- Back-propagation is
 - a clean way to organize the computation of the gradient
 - an efficient way to compute the gradient
Consider a function \(g : \mathbb{R}^p \rightarrow \mathbb{R}^n \).

- Typical computation graph:

- Broken out into components:
Consider a function \(g : \mathbb{R}^p \to \mathbb{R}^n \).

- Partial derivative \(\frac{\partial b_i}{\partial a_j} \) is the instantaneous rate of change of \(b_i \) as we change \(a_j \).
- If we change \(a_j \) slightly to \(a_j + \delta \),
- Then (for small \(\delta \)), \(b_i \) changes to approximately \(b_i + \frac{\partial b_i}{\partial a_j} \delta \).
Partial Derivatives of an Affine Function

- Define the affine function \(g(x) = Mx + c \), for \(M \in \mathbb{R}^{n \times p} \) and \(c \in \mathbb{R} \).

- If we let \(b = g(a) \), then what is \(b_i \)?
 - \(b_i \) depends on the \(i \)th row of \(M \):
 \[
 b_i = \sum_{k=1}^{p} M_{ik}a_k + c_i
 \]
 - and
 \[
 \frac{\partial b_i}{\partial a_j} = M_{ij}.
 \]

- So for an affine mapping, entries of matrix \(M \) directly tell us the rates of change.
Chain Rule (in terms of partial derivatives)

- \(g : \mathbb{R}^p \to \mathbb{R}^n \) and \(f : \mathbb{R}^n \to \mathbb{R}^m \). Let \(b = g(a) \). Let \(c = f(b) \).

- Chain rule says that
 \[
 \frac{\partial c_i}{\partial a_j} = \sum_{k=1}^{n} \frac{\partial c_i}{\partial b_k} \frac{\partial b_k}{\partial a_j}.
 \]

- Change in \(a_j \) may change each of \(b_1, \ldots, b_n \).
- Changes in \(b_1, \ldots, b_n \) may each effect \(c_i \).
- Chain rule tells us that, to first order, the net change in \(c_i \) is
 - the sum of the changes induced along each path from \(a_j \) to \(c_i \).
Example: Least Squares Regression
Review: Linear least squares

- Hypothesis space \(\{ f(x) = w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \} \).
- Data set \((x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \mathbb{R}\).
- Define
 \[
 \ell_i(w, b) = \left((w^T x_i + b) - y_i \right)^2.
 \]
- In SGD, in each round we’d choose a random index \(i \in 1, \ldots, n\) and take a gradient step
 \[
 w_j \leftarrow w_j - \eta \frac{\partial \ell_i(w, b)}{\partial w_j}, \text{ for } j = 1, \ldots, d
 \]
 \[
 b \leftarrow b - \eta \frac{\partial \ell_i(w, b)}{\partial b},
 \]
 for some step size \(\eta > 0\).
- Let’s revisit how to calculate these partial derivatives...
For a generic training point \((x, y)\), denote the loss by

\[
\ell(w, b) = [(w^T x + b) - y]^2.
\]

Let's break this down into some intermediate computations:

- **Prediction** \(\hat{y} = \sum_{j=1}^{d} w_j x_j + b\)
- **Residual** \(r = y - \hat{y}\)
- **Loss** \(\ell = r^2\)
Partial Derivatives on Computation Graph

- We'll work our way from graph output ℓ back to the parameters w and b:

 \[
 \frac{\partial \ell}{\partial r} = 2r \\
 \frac{\partial \ell}{\partial \hat{y}} = \frac{\partial \ell}{\partial r} \frac{\partial r}{\partial \hat{y}} = (2r)(-1) = -2r \\
 \frac{\partial \ell}{\partial b} = \frac{\partial \ell}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b} = (-2r)(1) = -2r \\
 \frac{\partial \ell}{\partial w_j} = \frac{\partial \ell}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_j} = (-2r)x_j = -2rx_j
 \]
Example: Ridge Regression
Ridge Regression: Computation Graph and Intermediate Variables

- For training point \((x, y)\), the \(\ell_2\)-regularized objective function is

\[
J(w, b) = \left((w^T x + b) - y \right)^2 + \lambda w^T w.
\]

- Let’s break this down into some intermediate computations:

 \[
 \begin{align*}
 \text{(prediction)} \hat{y} &= \sum_{j=1}^{d} w_j x_j + b \\
 \text{(residual)} r &= y - \hat{y} \\
 \text{(loss)} \ell &= r^2 \\
 \text{(regularization)} R &= \lambda w^T w \\
 \text{(objective)} J &= \ell + R
 \end{align*}
 \]
We'll work our way from graph output ℓ back to the parameters w and b:

\[
\begin{align*}
\frac{\partial J}{\partial \ell} &= \frac{\partial J}{\partial R} = 1 \\
\frac{\partial J}{\partial \hat{y}} &= \frac{\partial J}{\partial \ell} \frac{\partial \ell}{\partial r} \frac{\partial r}{\partial \hat{y}} = (1)(2r)(-1) = -2r \\
\frac{\partial J}{\partial b} &= \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b} = (-2r)(1) = -2r \\
\frac{\partial J}{\partial w_j} &= ?
\end{align*}
\]
Handling Nodes with Multiple Children

- Consider $a \mapsto J = h(f(a), g(a))$.

- It’s helpful to think about having two independent copies of a, call them $a^{(1)}$ and $a^{(2)}$...
Handling Nodes with Multiple Children

\[
\frac{\partial J}{\partial a} = \frac{\partial J}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial a} + \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial a}
\]

- Derivative w.r.t. \(a \) is the sum of derivatives w.r.t. each copy of \(a \).
Partial Derivatives on Computation Graph

- We’ll work our way from graph output ℓ back to the parameters w and b:

\[
\frac{\partial J}{\partial \hat{y}} = \frac{\partial J}{\partial \ell} \frac{\partial \ell}{\partial r} \frac{\partial r}{\partial \hat{y}} = (1)(2r)(-1) = -2r
\]

\[
\frac{\partial J}{\partial w_j^{(2)}} = \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_j^{(2)}} = \frac{\partial J}{\partial \hat{y}} \lambda
\]

\[
\frac{\partial J}{\partial w_j^{(1)}} = \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_j^{(1)}} \frac{\partial \hat{y}}{\partial w_j^{(1)}} = (1)(2\lambda w_j^{(1)})
\]

\[
\frac{\partial J}{\partial w_j} = \frac{\partial J}{\partial w_j^{(1)}} + \frac{\partial J}{\partial w_j^{(2)}}
\]
General Backpropagation
Backpropagation is a specific way to evaluate the partial derivatives of a computation graph output J w.r.t. the inputs and outputs of all nodes.

Backpropagation works node-by-node.

To run a “backward” step at a node f, we assume

- we’ve already run “backward” for all of f’s children.

Backward at node $f : a \mapsto b$ returns

- Partial of objective value J w.r.t. f’s output: $\frac{\partial J}{\partial b}$
- Partial of objective value J w.r.t f’s input: $\frac{\partial J}{\partial a}$
Backpropagation: Simple Case

Simple case: all nodes take a single scalar as input and have a single scalar output.

Backprop for node f:

- **Input**: $\frac{\partial J}{\partial b^{(1)}}, \ldots, \frac{\partial J}{\partial b^{(N)}}$
 (Partials w.r.t. inputs to all children)
- **Output**:

$$\frac{\partial J}{\partial b} = \sum_{k=1}^{N} \frac{\partial J}{\partial b^{(k)}}$$

$$\frac{\partial J}{\partial a} = \frac{\partial J}{\partial b} \frac{\partial b}{\partial a}$$
More generally, consider $f : \mathbb{R}^d \rightarrow \mathbb{R}^n$.

Input: $\frac{\partial J}{\partial b_j^{(i)}}$, $i = 1, \ldots, N$, $j = 1, \ldots, n$

Output:

$$\frac{\partial J}{\partial b_j} = \sum_{k=1}^{N} \frac{\partial J}{\partial b_j^{(k)}}$$

$$\frac{\partial J}{\partial a_i} = \sum_{j=1}^{n} \frac{\partial J}{\partial b_j} \frac{\partial b_j}{\partial a_i}$$
Running Backpropagation

- If we run “backward” on every node in our graph,
 - we’ll have the gradients of J w.r.t. all our parameters.
- To run backward on a particular node,
 - we assumed we already ran it on all children.
- A **topological sort** of the nodes in a directed [acyclic] graph
 - is an ordering which every node appears before its children.
- So we’ll evaluate backward on nodes in a **reverse topological ordering**.