NYU Center for Data Science: DS-GA 1003 Machine Learning and Computational Statistics (Spring 2018)

Brett Bernstein, David Rosenberg, Ben Jakubowski

January 20, 2018

Instructions: Following most lab and lecture sections, we will be providing concept checks for review. Each concept check will:

- List the lab/lecture learning objectives. You will be responsible for mastering these objectives, and demonstrating mastery through homework assignments, exams (midterm and final), and on the final course project.
- Include concept check questions. These questions are intended to reinforce the lab/lectures, and help you master the learning objectives.

You are strongly encourage to complete all concept check questions, and to discuss these (and related) problems on Piazza and at office hours. However, problems marked with a (\star) are considered optional.

Lab 1: Gradients and Directional Derivatives

Multivariate Differentiation

Learning Objectives

1. Define the directional derivative, and use it to find a linear approximation to $f(\mathbf{x}+h \mathbf{u})$.
2. Define partial derivative and the gradient. Show how to compute an arbitrary directional derivative using the gradient.
3. For a differentiable function, give a linear approximation near a point \mathbf{x} using the gradient.
4. Show that the gradient gives the direction of steepest ascent, and the negative gradient gives the direction of steepest descent.
[^0]
Concept Check Questions

1. If $f^{\prime}(x ; u)<0$ show that $f(x+h u)<f(x)$ for sufficiently small $h>0$.

Solution. The directional derivative is given by

$$
f^{\prime}(x ; u)=\lim _{h \rightarrow 0} \frac{f(x+h u)-f(x)}{h}<0 .
$$

By the definition of a limit, there must be a $\delta>0$ such that

$$
\frac{f(x+h u)-f(x)}{h}<0
$$

whenever $|h|<\delta$. If we restrict $0<h<\delta$ then we have

$$
f(x+h u)-f(x)<0 \Longrightarrow f(x+h u)<f(x)
$$

as required.
2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable, and assume that $\nabla f(x) \neq 0$. Prove

$$
\underset{\|u\|_{2}=1}{\arg \max } f^{\prime}(x ; u)=\frac{\nabla f(x)}{\|\nabla f(x)\|_{2}} \quad \text { and } \quad \underset{\|u\|_{2}=1}{\arg \min } f^{\prime}(x ; u)=-\frac{\nabla f(x)}{\|\nabla f(x)\|_{2}} .
$$

Solution. By Cauchy-Schwarz we have, for $\|u\|_{2}=1$,

$$
\left|f^{\prime}(x ; u)\right|=\left|\nabla f(x)^{T} u\right| \leq\|\nabla f(x)\|_{2}\|u\|_{2}=\|\nabla f(x)\|_{2} .
$$

Note that

$$
\nabla f(x)^{T} \frac{\nabla f(x)}{\|\nabla f(x)\|_{2}}=\|\nabla f(x)\|_{2} \quad \text { and } \quad \nabla f(x)^{T} \frac{-\nabla f(x)}{\|\nabla f(x)\|_{2}}=-\|\nabla f(x)\|_{2}
$$

so these achieve the maximum and minimum bounds given by Cauchy-Schwarz.
One way to understand the Cauchy-Schwarz inequality is to recall that the dot-product between two vectors $v, w \in \mathbb{R}^{d}$ can be written as

$$
v^{T} w=\|v\|_{2}\|w\|_{2} \cos (\theta)
$$

where θ is the angle between v and w. This value is maximized at $\cos (0)=1$ and minimized at $\cos (\pi)=-1$.

Computing Gradients

Learning Objectives

1. Find the gradient of a function by computing each partial derivative separately.
2. Use the chain rule to perform gradient computations.
3. Compute the gradient of a differentiable function by determining the form of a general directional derivative.

Concept Check Questions

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=x^{2}+4 x y+3 y^{2}$. Compute the gradient $\nabla f(x, y)$.

Solution. Computing the partial derivatives gives

$$
\partial_{1} f(x, y)=2 x+4 y \quad \text { and } \quad \partial_{2} f(x, y)=4 x+6 y
$$

Thus the gradient is given by

$$
\nabla f(x, y)=\binom{2 x+4 y}{4 x+6 y}
$$

2. Compute the gradient of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ where $f(x)=x^{T} A x$ and $A \in \mathbb{R}^{n \times n}$ is any matrix. Solution. Here we show two methods. In either case we can obtain differentiability by noticing the partial derivatives are continuous.
(a) Since

$$
f(x)=x^{T} A x=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}
$$

we have

$$
\partial_{k} f(x)=\sum_{j=1}^{n}\left(a_{k j}+a_{j k}\right) x_{j}
$$

so

$$
\nabla f(x)=\left(A+A^{T}\right) x
$$

(b) Note that

$$
\begin{aligned}
f(x+t v) & =(x+t v)^{T} A(x+t v) \\
& =x^{T} A x+t x^{T} A v+t v^{T} A x+t^{2} v^{T} A v \\
& =f(x)+t\left(x^{T} A+x^{T} A^{T}\right) v+t^{2}\left(v^{T} A v\right) .
\end{aligned}
$$

Thus

$$
f^{\prime}(x ; v)=\lim _{t \rightarrow 0} \frac{f(x+t v)-f(x)}{t}=\lim _{t \rightarrow 0}\left(x^{T} A+x^{T} A^{T}\right) v+t\left(v^{T} A v\right)=\left(x^{T} A+x^{T} A^{T}\right) v .
$$

This shows

$$
\nabla f(x)=\left(A+A^{T}\right) x
$$

3. Compute the gradient of the quadratic function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
f(x)=b+c^{T} x+x^{T} A x
$$

where $b \in \mathbb{R}, c \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{n \times n}$.

Solution. First consider the linear function $g(x)=c^{T} x$. Note that

$$
g(x+t v)=c^{T}(x+t v)=c^{T} x+t c^{T} v \Longrightarrow \nabla f(x)=c .
$$

As the derivative is linear we can combine this with the previous problem to obtain

$$
\nabla f(x)=c+\left(A+A^{T}\right) x
$$

4. Fix $s \in \mathbb{R}^{n}$ and consider $f(x)=(x-s)^{T} A(x-s)$ where $A \in \mathbb{R}^{n \times n}$. Compute the gradient of f.

Solution. We give two methods.
(a) Let $g(x)=x^{T} A x$ and $h(x)=x-s$ so that $f(x)=g(h(x))$. By the vector-valued form of the chain rule we have

$$
\nabla f(x)=\nabla g(h(x))^{T} D h(x)=\left(A+A^{T}\right)(x-s)
$$

where $D h(x)=\mathbf{I}_{n \times n}$ is the Jacobian matrix of h.
(b) We have

$$
(x-s)^{T} A(x-s)=x^{T} A x-s^{T}\left(A+A^{T}\right) x+s^{T} A s .
$$

Computing the gradient gives

$$
\nabla f(x)=\left(A+A^{T}\right) x-\left(A+A^{T}\right) s=\left(A+A^{T}\right)(x-s)
$$

5. Consider the ridge regression objective function

$$
f(w)=\|A w-y\|_{2}^{2}+\lambda\|w\|_{2}^{2}
$$

where $w \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, y \in \mathbb{R}^{m}$, and $\lambda \in \mathbb{R}_{\geq 0}$.
(a) Compute the gradient of f.
(b) Express f in the form $f(w)=\|B w-z\|_{2}^{2}$ for some choice of B, z. What do you notice about B ?
(c) Using either of the parts above, compute

$$
\underset{w \in \mathbb{R}^{n}}{\arg \min } f(w) .
$$

Solution.
(a) We can express $f(w)$ as

$$
f(w)=(A w-y)^{T}(A w-y)+\lambda w^{T} w=w^{T} A^{T} A w-2 y^{T} A w+y^{T} y+\lambda w^{T} w
$$

Applying our previous results gives (noting $w^{T} w=w^{T} \mathbf{I}_{n \times n} w$)

$$
\nabla f(w)=2 A^{T} A w-2 A^{T} y+2 \lambda w=2\left(A^{T} A+\lambda \mathbf{I}_{n \times n}\right) w-2 A^{T} y
$$

(b) Let

$$
B=\binom{A}{\sqrt{\lambda} \mathbf{I}_{n \times n}} \quad \text { and } \quad z=\binom{y}{\mathbf{0}_{n \times 1}}
$$

written in block-matrix form. Note B is full rank.
(c) The argmin is $w=\left(A^{T} A+\lambda \mathbf{I}_{n \times n}\right)^{-1} A^{T} y$. To see why the inverse is valid, see the linear algebra questions below.
6. Compute the gradient of

$$
f(\theta)=\lambda\|\theta\|_{2}^{2}+\sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} \theta^{T} x_{i}\right)\right)
$$

where $y_{i} \in \mathbb{R}$ and $\theta \in \mathbb{R}^{m}$ and $x_{i} \in \mathbb{R}^{m}$ for $i=1, \ldots, n$.
Solution. As the derivative is linear, we can compute the gradient of each term separately and obtain

$$
\nabla f(\theta)=2 \lambda \theta-\sum_{i=1}^{n} \frac{\exp \left(-y_{i} \theta^{T} x_{i}\right)}{1+\exp \left(-y_{i} \theta^{T} x_{i}\right)} y_{i} x_{i}
$$

where we used the techniques from Recitation 1 to differentiate the log terms.

[^0]: *Brett authored these concept checks for Spring 2017 DS-GA 1003, and the work is almost entirely his. Later (minor) modifications were made by David Rosenberg and Ben Jakubowski.

