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Instructions: Following most lab and lecture sections, we will be providing concept
checks for review. Each concept check will:

• List the lab/lecture learning objectives. You will be responsible for mastering these ob-
jectives, and demonstrating mastery through homework assignments, exams (midterm
and final), and on the final course project.

• Include concept check questions. These questions are intended to reinforce the lab/lec-
tures, and help you master the learning objectives.

You are strongly encourage to complete all concept check questions, and to discuss these
(and related) problems on Piazza and at office hours. However, problems marked with a (?)
are considered optional.

Week 4 Lab: Concept Check Exercises

Subgradients

1. (?) If f : Rn → R is convex and differentiable at x, the ∂f(x) = {∇f(x)}.

Solution. By the gradient (first-order) conditions for convexity, we know that ∇f(x) ∈
∂f(x). Next suppose g ∈ ∂f(x). This means that for all v ∈ Rn and h ∈ R we have

f(x+ hv) ≥ f(x) + hgTv =⇒ f(x+ hv)− f(x)

h
≥ gTv.

Using −h in place of h gives

f(x− hv) ≥ f(x)− hgTv =⇒ gTv ≥ f(x− hv)− f(x)

−h
.

Taking limits as h→ 0 gives

∇f(x)Tv ≥ gTv ≥ ∇f(x)Tv.
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Thus all terms are equal. Subtracting gives

(∇f(x)− g)Tv = 0,

which holds for all v ∈ Rn. Letting v = ∇f(x)− g proves

‖∇f(x)− g‖22 = 0

giving the result.

2. Fix f : Rn → R and x ∈ Rn. Then the subdifferential ∂f(x) is a convex set.

Solution. Let g1, g2 ∈ ∂f(x) and t ∈ (0, 1). We must show (1 − t)g1 + tg2 is a
subgradient. Note that, for any y ∈ Rn, we have

f(x) + ((1− t)g1 + tg2)
T (y − x) = (1− t)(f(x) + gT1 (y − x)) + t(f(x) + gT2 (y − x))

≤ (1− t)f(y) + tf(y)
= f(y).

3. (a) True or False: A subgradient of f : Rn → R at x is normal to a hyperplane that
globally understimates the graph of f .

(b) True or False: If g ∈ ∂f(x) then −g is a descent direction of f .

(c) True or False: For f : R→ R, if 1,−1 ∈ ∂f(x) then x is a global minimizer of f .

(d) True or False: Let f : Rn → R and let g ∈ ∂f(x). Then αg ∈ ∂f(x) for all
α ∈ [0, 1].

(e) True or False: If the sublevel sets of a function are convex, then the function is
convex.

Solution.

(a) False. The underestimating hyperplane is a subset of Rn+1 but a subgradient is
an element of Rn.

(b) False. In lab we considered f(x1, x2) = |x1| + 2|x2| and noted that (1,−2) ∈
∂f(3, 0) but (−1, 2) is not a descent direction.

(c) True. The subdifferential of f at x is convex, and thus contains 0. If 0 is a
subgradient of f at x, then x is a global minimizer.

(d) False. Suppose f : R → R is defined by f(x) = x2. Then ∂f(1) = {2}, and thus
doesn’t contain 2α for α ∈ [0, 1).

(e) False. A counterexample is f(x) = −e−x2
. The converse is true though. Functions

that have convex sublevel sets are called quasiconvex.

4. Let f : R2 → R be defined by f(x1, x2) = |x1| + 2|x2|. Compute ∂f(x1, x2) for each
x1, x2 ∈ R2.
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Solution. Write f(x1, x2) = f1(x1, x2)+f2(x1, x2) where f1(x1, x2) = |x1| and f2(x1, x2) =
2|x2|. When x1 6= 0 we have ∂f1(x1, x2) = {(sgn(x1), 0)T} and when x1 = 0 we have

∂f1(x1, x2) = {(b, 0)T | b ∈ [−1, 1]}.

When x2 6= 0 we have ∂f2(x1, x2) = {(0, 2 sgn(x2))
T} and when x2 = 0 we have

∂f2(x1, x2) = {(0, c)T | c ∈ [−2, 2]}.

Combining we have

∂f(x1, x2) = ∂f1(x1, x2) + ∂f2(x1, x2),

where we are summing sets. Recall that if A,B ⊆ Rn then

A+B = {a+ b | a ∈ A, b ∈ B}.

This gives 4 cases:

(a) If x1, x2 6= 0 this gives ∂f(x1, x2) = {(sgn(x1), 2 sgn(x2))
T}.

(b) If x1 = 0 and x2 6= 0 we have ∂f(x1, x2) = {(b, 2 sgn(x2))
T | b ∈ [−1, 1]}.

(c) If x1 6= 0 and x2 = 0 we have ∂f(x1, x2) = {(sgn(x1), c)
T | c ∈ [−2, 2]}.

(d) If x1 = 0 and x2 = 0 we have ∂f(x1, x2) = {(b, c)T | b ∈ [−1, 1], c ∈ [−2, 2]}.
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