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Instructions: Following most lab and lecture sections, we will be providing concept
checks for review. Each concept check will:

• List the lab/lecture learning objectives. You will be responsible for mastering these ob-
jectives, and demonstrating mastery through homework assignments, exams (midterm
and final), and on the final course project.

• Include concept check questions. These questions are intended to reinforce the lab/lec-
tures, and help you master the learning objectives.

You are strongly encourage to complete all concept check questions, and to discuss these
(and related) problems on Piazza and at office hours. However, problems marked with a (?)
are considered optional.

Lecture 4: Concept Checks

Convexity

Optional Learning Objectives

Convex optimization and Lagrangian duality will not covered on the midterm exam, so in
some sense these objectives are optional.

• Define a convex set, a convex function, and a strictly convex function. (Don’t forget
that the domain of a convex function must be a convex set!)

• For an optimization problem, define the terms feasible set, feasible point, active con-
straint, optimal value, and optimal point.

• Give the form for a general inequality-constrained optimization problem (there are
many ways to do this, but our convention is to have inequality constraints of the form
fi(x) ≤ 0).
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• Define the Lagrangian for this optimization problem, and explain how the Lagrangian
encodes all the information in the original optimization problem.

• Write the primal and dual optimization problem in terms of the Lagrangian.

Convexity Concept Check Problems

1. If A,B ⊆ Rn are convex, then A ∩B is convex.

2. Let f, g : Rn → R be convex. Show that af + bg is convex if a, b ≥ 0.

3. Let f : Rn → R be convex and differentiable. Prove that if ∇f(x) = 0 then x is a
global minimizer.

4. Prove that if f : Rn → R is strictly convex and x is a global minimizer, then it is the
unique global minimizer.

5. Prove that any affine function f : Rn → R is both convex and concave.

6. Let f : Rn → R be convex and let g : Rm → Rn be affine. Then f ◦ g is convex.

7. (??)

(a) Let f : R→ R be convex. Show that f has one-sided left and right derivatives at
every point.

(b) Let f : Rn → R be convex. Show that f has one-sided directional derivatives at
every point.

(c) Let f : Rn → R be convex. Show that if x is not a minimizer of f then f has a
descent direction at x (i.e., a direction whose corresponding one-sided directional
derivative is negative).

Convex Optimization Problems

1. Suppose there are mn people forming m rows with n columns. Let a denote the height
of the tallest person taken from the shortest people in each column. Let b denote the
height of the shortest person taken from the tallest people in each row. What is the
relationship between a and b?

2. Let x1, . . . , xn ∈ Rd be given data. You want to find the center and radius of the
smallest sphere that encloses all of the points. Express this problem as a convex
optimization problem.

3. Suppose x1, . . . , xn ∈ Rd and y1, . . . , yn ∈ {−1, 1}. Here we look at yi as the label of xi.
We say the data points are linearly separable if there is a vector v ∈ Rd and a ∈ R such
that vTxi > a when yi = 1 and vTxi < a for yi = −1. Give a method for determining
if the given data points are linearly separable.
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4. Consider the Ivanov form of ridge regression:

minimize ‖Ax− y‖22
subject to ‖x‖22 ≤ r2,

where r > 0, y ∈ Rm and A ∈ Rm×n are fixed.

(a) What is the Lagrangian?

(b) What do you get when you take the supremum of the Lagrangian over the feasible
values for the dual variables?
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