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Instructions: Following most lab and lecture sections, we will be providing concept
checks for review. Each concept check will:

• List the lab/lecture learning objectives. You will be responsible for mastering these ob-
jectives, and demonstrating mastery through homework assignments, exams (midterm
and final), and on the final course project.

• Include concept check questions. These questions are intended to reinforce the lab/lec-
tures, and help you master the learning objectives.

You are strongly encourage to complete all concept check questions, and to discuss these
(and related) problems on Piazza and at office hours. However, problems marked with a (?)
are considered optional.

Trees, Bootstrap, Bagging, and RFs

Trees

Trees Learning Objectives

• Be able to describe the structure of a binary tree (ex: put bounds on number of leaves
given height; describe the geometry of the resulting prediction function; etc.).

• Give pseudocode for finding the optimal split for (a) a continuous feature, and (b) a
categorical feature for a binary classification problem.

• Describe some reasonable strategies for controlling the complexity of a tree.

• In particular, describe the regularization approach used in CART (pruning and use of
number of leaves as complexity measure), recognize the cost complexity criterion as
our standard regularized ERM.

• Recall the entropy, Gini, and misclassification error splitting criteria. Give some intu-
ition around preference for Gini/entropy (i.e. purity measures) over misclassification.
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Trees Concept Check Questions

1. (a) How many regions (leaves) will a tree with k node splits have?

(b) What is the maximum number of regions a tree of height k can have? Recall that
the height of a tree is the number of edges in the longest path from the root to
any leaf.

(c) Give an upper bound on the depth needed to exactly classify n distinct points in
Rd. [Hint: In the worst case each leaf will have a single training point.]

Solution.

(a) Given a fixed tree, if we split a leaf node we add a single leaf to the tree. Thus k
splits corresponds to k + 1 leaves.

(b) A tree of height k can have at most 2k regions (leaves).

(c) A tree of height dlog2(n)e is sufficient to distinguish all possible values for the first
feature. At each leaf we can then put another tree of this height that distinguishes
the second feature, and so forth. These give an upper bound of ddlog2(n)e.

2. This question involves fitting a regression tree using the square loss. Assume the n
data points for the current node are sorted by the first feature. Give pseudocode with
O(n) runtime for optimally splitting the current node with respect to the first feature.

Solution.

import numpy as np
def bestSplit(y) :

’’’
Greedily computes the best splitting point for the current node.
Assumes there is at least 2 values. There are more numerically
stable ways of doing this
[see The Art of Computer Programming p. 232, Vol 2, 3rd Edition]
@param y : array−like, shape = [n samples,], contains the
output values for each sample. Assumes the
values are sorted by the corresponding first
feature values.
@return the value i such that inputs 0,...,i belong in the
left subtree.
’’’
sums = np.cumsum(y) #partial sums of y−values
sumsq = np.cumsum([a∗∗2 for a in y]) #partial sums of squared y−values
S = sums[−1] #sum of all y−values
SS = sumsq[−1] # sum of all squared y−values
bestIdx = −1
bestLoss = None
N = len(y)
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for idx in range(N−1) :
leftLoss = sumsq[idx] − sums[idx]∗∗2/(idx+1.0)
rightLoss = (SS−sumsq[idx])−(S−sums[idx])∗∗2/(N−(idx+1.0))
loss = leftLoss+rightLoss
if bestIdx == −1 or loss < bestLoss :

bestIdx = idx
bestLoss = loss

return bestIdx,bestLoss

3. Suppose we are looking at a fixed node of a classification tree, and the class labels are,
sorted by the first feature values,

4, 1, 0, 0, 1, 0, 2, 3, 3.

We are currently testing splitting the node into a left node containing 4, 1, 0, 0, 1, 0 and
a right node containing 2, 3, 3. For each of the following impurity measures, give the
value for the left and right parts, along with the total score for the split.

(a) Misclassification error.

(b) Gini index.

(c) Entropy.

Solution.

(a) Left: 3/6, Right: 1/3, Total: 6(3/6) + 3(1/3) = 4

(b) Left: 3/6(3/6) + 2/6(4/6) + 1/6(5/6) = 22/36, Right: 1/3(2/3) + 2/3(1/3) = 4/9,
Total: 6(22/36) + 3(4/9) = 30/6 = 5

(c) Left: −3/6 log(3/6)−2/6 log(2/6)−1/6 log(1/6), Right: −1/3 log(1/3)−2/3 log(2/3),
Total:

6[−3/6 log(3/6)− 2/6 log(2/6)− 1/6 log(1/6)] + 3[−1/3 log(1/3)− 2/3 log(2/3)].

Bootstrap and Bagging

Bootstrap and Bagging Learning Objectives

• Recall from basic statics concepts related to an estimator (e.g. bias) and its variance.

• Describe (outside the context of bagging/RFs) how the bootstrap is a useful method
for estimating the variance of an estimator, and have some intuition on how it can be
applied across many problems.

• Again recalling basic statistics, understand why bagging (averaging predictions) re-
duces variance.
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• Recalling that the bootstrap ignores an expected 37% of data in each bootstrap sample,
explain how we can use out-of-bag observations to approximate test performance.

• Describe how RF reduces correlation between trees using column sampling while train-
ing on bootstrap samples.

Bootstrap and Bagging Concept Check Questions

1. Let X1, . . . , Xn be an i.i.d. sample from a distribution with mean µ and variance σ2.
How large must n be so that the sample mean has standard error smaller than .01?

Solution. Recall that the sample mean has variance

Var

(
1

n

n∑
i=1

Xi

)
=

Var(X1)

n
=
σ2

n
,

with standard error σ/
√
n. Thus we have

σ/
√
n < .01 ⇐⇒ n > 10000σ2.

2. Let X1, . . . , X2n+1 be an i.i.d. sample from a distribution. To estimate the median of
the distribution, you can compute the sample median of the data.

(a) Give pseudocode that computes an estimate of the variance of the sample median.

(b) Give pseudocode that computes an estimate of a 95% confidence interval for the
median.

Solution.

(a) i. Draw B bootstrap samples D1, . . . , DB each of size 2n+ 1. The samples are
formed by drawing uniformly with replacement from the original data set
X1, . . . , X2n+1. We will make a total of B(2n+ 1) draws.

ii. For each Di compute the corresponding median m̂i.

iii. Compute the sample variance of the B medians m1, . . . ,mB.

(b) i. Draw B bootstrap samples D1, . . . , DB each of size 2n+ 1. The samples are
formed by drawing uniformly with replacement from the original data set
X1, . . . , X2n+1. We will make a total of B(2n+ 1) draws.

ii. For each Di compute the corresponding median m̂i.

iii. Compute the 2.5% and 97.5% sample quantiles of the list m̂1, . . . , m̂B. Use
these as the estimates of the left and right endpoints of the confidence interval,
respectively.
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