
Homework 3: SVM and Sentiment Analysis

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using software
that typesets mathematics (e.g. LATEX, LYX, or MathJax via iPython), though if you need to you
may scan handwritten work. You may find the minted package convenient for including source code
in your LATEX document. If you are using LYX, then the listings package tends to work better.

1 Introduction
In this assignment, we’ll be working with natural language data. In particular, we’ll be doing
sentiment analysis on movie reviews. This problem will give you the opportunity to try your hand at
feature engineering, which is one of the most important parts of many data science problems. From
a technical standpoint, this homework has two new pieces. First, you’ll be implementing Pegasos.
Pegasos is essentially stochastic subgradient descent for the SVM with a particular schedule for the
step-size. Second, because in natural langauge domains we typically have huge feature spaces, we
work with sparse representations of feature vectors, where only the non-zero entries are explicitly
recorded. This will require coding your gradient and SGD code using hash tables (dictionaries in
Python), rather than numpy arrays. We begin with some practice with subgradients and an easy
problem that introduces the Perceptron algorithm.

2 Calculating Subgradients
Recall that a vector g ∈ Rd is a subgradient of f : Rd → R at x if for all z,

f(z) ≥ f(x) + gT (z − x).

As we noted in lecture, there may be 0, 1, or infinitely many subgradients at any point. The
subdifferential of f at a point x, denoted ∂f(x), is the set of all subgradients of f at x.

Just as there is a calculus for gradients, there is a calculus for subgradients1. For our purposes,
we can usually get by using the definition of subgradient directly. However, in the first problem
below we derive a property that will make our life easier for finding a subgradient of the hinge loss
and perceptron loss.

1. [Subgradients for pointwise maximum of functions] Suppose f1, . . . , fm : Rd → R are convex
functions, and

f(x) = max
i=1,...,,m

fi(x).

1A good reference for subgradients are the course notes on Subgradients by Boyd et al.
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Let k be any index for which fk(x) = f(x), and choose g ∈ ∂fk(x). [We are using the fact that
a convex function on Rd has a non-empty subdifferential at all points.] Show that g ∈ ∂f(x).

2. [Subgradient of hinge loss for linear prediction] Give a subgradient of

J(w) = max
{
0, 1− ywTx

}
.

3 Perceptron
The perceptron algorithm is often the first classification algorithm taught in machine learning
classes. Suppose we have a labeled training set (x1, y1) , . . . , (xn, yn) ∈ Rd × {−1, 1}. In the
perceptron algorithm, we are looking for a hyperplane that perfectly separates the classes. That is,
we’re looking for w ∈ Rd such that

yiw
Txi > 0 ∀i ∈ {1, . . . , n} .

Visually, this would mean that all the x’s with label y = 1 are on one side of the hyperplane{
x | wTx = 0

}
, and all the x′s with label y = −1 are on the other side. When such a hyperplane

exists, we say that the data are linearly separable. The perceptron algorithm is given in Algorithm
1.

Algorithm 1: Perceptron Algorithm
input: Training set (x1, y1) , . . . , (xn, yn) ∈ Rd × {−1, 1}
w(0) = (0, . . . , 0) ∈ Rd

k = 0 # step number
repeat

all_correct = TRUE
for i = 1, 2, . . . , n # loop through data

if (yixTi w
(k) ≤ 0)

w(k+1) = w(k) + yixi
all_correct = FALSE

else
w(k+1) = w(k)

end if
k = k + 1

end for
until (all_correct == TRUE)
return w(k)

There is also something called the perceptron loss, given by

`(ŷ, y) = max {0,−ŷy} .

In this problem we will see why this loss function has this name.
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1. Show that if
{
x | wTx = 0

}
is a separating hyperplane for a training setD = ((x1, y1) , . . . , (xn, yn)),

then the average perceptron loss on D is 0. Thus any separating hyperplane of D is an em-
pirical risk minimizer for perceptron loss.

2. Let H be the linear hypothesis space consisting of functions x 7→ wTx. Consider running
stochastic subgradient descent (SSGD) to minimize the empirical risk with the perceptron
loss. We’ll use the version of SSGD in which we cycle through the data points in each epoch.
Show that if we use a fixed step size 1, we terminate when our training data are separated, and
we make the right choice of subgradient, then we are exactly doing the Perceptron algorithm.

3. Suppose the perceptron algorithm returns w. Show that w is a linear combination of the
input points. That is, we can write w =

∑n
i=1 αixi for some α1, . . . , αn ∈ R. The xi for

which αi 6= 0 are called support vectors. Give a characterization of points that are support
vectors and not support vectors.

4 The Data
We will be using the Polarity Dataset v2.0, constructed by Pang and Lee. It has the full text from
2000 movies reviews: 1000 reviews are classified as “positive” and 1000 as “negative.” Our goal is
to predict whether a review has positive or negative sentiment from the text of the review. Each
review is stored in a separate file: the positive reviews are in a folder called “pos”, and the negative
reviews are in “neg”. We have provided some code in load.py to assist with reading these files.
You can use the code, or write your own version. The code removes some special symbols from the
reviews. Later you can check if this helps or hurts your results.

1. Load all the data and randomly split it into 1500 training examples and 500 validation exam-
ples.

5 Sparse Representations
The most basic way to represent text documents for machine learning is with a “bag-of-words”
representation. Here every possible word is a feature, and the value of a word feature is the
number of times that word appears in the document. Of course, most words will not appear in any
particular document, and those counts will be zero. Rather than store a huge number of zeros, we
use a sparse representation, in which we only store the counts that are nonzero. The counts are
stored in a key/value store (such as a dictionary in Python). For example, “Harry Potter and Harry
Potter II” would be represented as the following Python dict: x={’Harry’:2, ’Potter’:2,
’and’:1, ’II’:1}. We will be using linear classifiers of the form f(x) = wTx, and we can
store the w vector in a sparse format as well, such as w={’minimal’:1.3, ’Harry’:-1.1,
’viable’:-4.2, ’and’:2.2, ’product’:9.1}. The inner product between w and x would
only involve the features that appear in both x and w, since whatever doesn’t appear is assumed
to be zero. For this example, the inner product would be x[Harry] * w[Harry] + x[and] *
w[and] = 2*(-1.1) + 1*(2.2). To help you along, we’ve included two functions for working
with sparse vectors: 1) a dot product between two vectors represented as dict’s and 2) a function
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that increments one sparse vector by a scaled multiple of another vector, which is a very common
operation. These functions are located in util.py. It is worth reading the code, even if you intend
to implement it yourself. You may get some ideas on how to make things faster.

1. Write a function that converts an example (e.g. a list of words) into a sparse bag-of-words
representation. You may find Python’s Counter class to be useful here: https://docs.
python.org/2/library/collections.html. Note that a Counter is also a dict.

6 Support Vector Machine via Pegasos
In this question you will build an SVM using the Pegasos algorithm. To align with the notation used
in the Pegasos paper2, we’re considering the following formulation of the SVM objective function:

min
w∈Rd

λ

2
‖w‖2 + 1

m

m∑
i=1

max
{
0, 1− yiwTxi

}
.

Note that, for simplicity, we are leaving off the unregularized bias term b. Pegasos is stochastic
subgradient descent using a step size rule ηt = 1/ (λt). The pseudocode is given below:

Input: λ > 0. Choose w1 = 0, t = 0
While termination condition not met
For j = 1, . . . ,m (assumes data is randomly permuted)
t = t+ 1
ηt = 1/ (tλ);
If yjwTt xj < 1
wt+1 = (1− ηtλ)wt + ηtyjxj

Else
wt+1 = (1− ηtλ)wt

1. [Written] Consider the “stochastic” SVM objective function, which is the SVM objective func-
tion with a single training point3: Ji(w) = λ

2 ‖w‖
2+max

{
0, 1− yiwTxi

}
. The function Ji(θ)

is not differentiable everywhere. Give an expression for the gradient of Ji(w) where it’s de-
fined, and specify where it is not defined.

2. [Written] Show that a subgradient of Ji(w) is given by

g =

{
λw − yixi for yiwTxi < 1

λw for yiwTxi ≥ 1.

You may use the following facts without proof: 1) If f1, . . . , fm : Rd → R are convex functions
and f = f1+ · · ·+fm, then ∂f(x) = ∂f1(x)+ · · ·+∂fm(x). 2) For α ≥ 0, ∂ (αf) (x) = α∂f(x).
[Hint: Use the rules provided and the calculation in the first problem.]

2Shalev-Shwartz et al.’s “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM”.
3Recall that if i is selected uniformly from the set {1, . . . ,m}, then this stochastic objective function has the same

expected value as the full SVM objective function.
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3. [Written] Show that if your step size rule is ηt = 1/ (λt), then doing SGD with the subgradient
direction from the previous problem is the same as given in the pseudocode.

4. Implement the Pegasos algorithm to run on a sparse data representation. The output should
be a sparse weight vector w. Note that our Pegasos algorithm starts at w = 0. In a sparse
representation, this corresponds to an empty dictionary. Note: With this problem, you will
need to take some care to code things efficiently. In particular, be aware that making copies
of the weight dictionary can slow down your code significantly. If you want to make a copy of
your weights (e.g. for checking for convergence), make sure you don’t do this more than once
per epoch. Also: If you normalize your data in some way, be sure not to destroy the sparsity
of your data. Anything that starts as 0 should stay at 0.

5. Note that in every step of the Pegasos algorithm, we rescale every entry of wt by the factor
(1 − ηtλ). Implementing this directly with dictionaries is very slow. We can make things
significantly faster by representing w as w = sW , where s ∈ R and W ∈ Rd. You can start
with s = 1 and W all zeros (i.e. an empty dictionary). Note that both updates (i.e. whether
or not we have a margin error) start with rescaling wt, which we can do simply by setting
st+1 = (1− ηtλ) st. If the update is wt+1 = (1 − ηtλ)wt + ηtyjxj , then verify that the
Pegasos update step is equivalent to:

st+1 = (1− ηtλ) st

Wt+1 = Wt +
1

st+1
ηtyjxj .

There is one subtle issue with the approach described above: if we ever have 1 − ηtλ = 0,
then st+1 = 0, and we’ll have a divide by 0 in the calculation for Wt+1. This only happens
when ηt = 1/λ. With our step-size rule of ηt = 1/ (λt), it happens exactly when t = 1. So one
approach is to just start at t = 2. More generically, note that if st+1 = 0, then wt+1 = 0. Thus
an equivalent representation is st+1 = 1 and W = 0. Thus if we ever get st+1 = 0, simply set
it back to 1 and reset Wt+1 to zero, which is an empty dictionary in a sparse representation.
Implement the Pegasos algorithm with the (s,W ) representation described above.
[See section 5.1 of Leon Bottou’s Stochastic Gradient Tricks for a more generic version of this
technique, and many other useful tricks.]

6. Run both implementations of Pegasos on the training data for a couple epochs (using the
bag-of-words feature representation described above). Make sure your implementations are
correct by verifying that the two approaches give essentially the same result. Report on the
time taken to run each approach.

7. Write a function that takes a sparse weight vector w and a collection of (x, y) pairs, and
returns the percent error when predicting y using sign(wTx). In other words, the function
reports the 0-1 loss of the linear predictor x 7→ wTx.
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8. Using the bag-of-words feature representation described above, search for the regularization
parameter that gives the minimal percent error on your test set. (You should now use your
faster Pegasos implementation, and run it to convergence.) A good search strategy is to start
with a set of regularization parameters spanning a broad range of orders of magnitude. Then,
continue to zoom in until you’re convinced that additional search will not significantly im-
prove your test performance. Once you have a sense of the general range of regularization
parameters that give good results, you do not have to search over orders of magnitude every
time you change something (such as adding a new feature).

9. [Optional] Recall that the “score” is the value of the prediction f(x) = wTx. We like to think
that the magnitude of the score represents the confidence of the prediction. This is something
we can directly verify or refute. Break the predictions into groups based on the score (you
can play with the size of the groups to get a result you think is informative). For each group,
examine the percentage error. You can make a table or graph. Summarize the results. Is
there a correlation between higher magnitude scores and accuracy?

10. [Optional] Our objective is not differentiable when yiw
Txi = 1. Investigate how often and

when we have yiwTxi = 1 (or perhaps within a small distance of 1 – this is for you to ex-
plore) . Describe your findings. If we didn’t know about subgradients, one might suggest just
skipping the update when ywTxi = 1. Does this seem reasonable? What about shortening
the step size by a small percentage?

7 Error Analysis
The natural language processing domain is particularly nice in that one can often interpret why a
model has performed well or poorly on a specific example, and sometimes it is not very difficult to
come up with ideas for new features that might help fix a problem. The first step in this process is
to look closely at the errors that our model makes.

1. Choose an input example x = (x1, . . . , xd) ∈ Rd that the model got wrong. We want to inves-
tigate what features contributed to this incorrect prediction. One way to rank the importance
of the features to the decision is to sort them by the size of their contributions to the score.
That is, for each feature we compute |wixi|, where wi is the weight of the ith feature in the
prediction function, and xi is the value of the ith feature in the input x. Create a table of
the most important features, sorted by |wixi|, including the feature name, the feature value
xi, the feature weight wi, and the product wixi. Attempt to explain why the model was
incorrect. Can you think of a new feature that might be able to fix the issue? Include a short
analysis for at least 2 incorrect examples.

8 Features
For a problem like this, the features you use are far more important than the learning model you
choose. Whenever you enter a new problem domain, one of your first orders of business is to beg,
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borrow, or steal the best features you can find. This means looking at any relevant published work
and seeing what they’ve used. Maybe it means asking a colleague what features they use. But
eventually you’ll need to engineer new features that help in your particular situation. To get ideas
for this dataset, you might check the discussion board on this Kaggle competition, which is using a
very similar dataset. There are also a very large number of academic research papers on sentiment
analysis that you can look at for ideas.

1. [Optional] Based on your error analysis, or on some idea you have, construct a new feature (or
group of features) that you hope will improve your test performance. Describe the features
and what kind of improvement they give. At this point, it’s important to consider the stan-
dard errors

√
p(1− p)/n (where p is the proportion of the test examples you got correct, and

n is the size of the test set) on your performance estimates, to know whether the improvement
is statistically significant.

2. [Optional] Try to get the best performance possible by generating lots of new features, chang-
ing the pre-processing, or any other method you want, so long as you are using the same core
SVM model. Describe what you tried, and how much improvement each thing brought to the
model. To get you thinking on features, here are some basic ideas of varying quality: 1) how
many words are in the review? 2) How many “negative” words are there? (You’d have to
construct or find a list of negative words.) 3) Word n-gram features: Instead of single-word
features, you can make every pair of consecutive words a feature. 4) Character n-gram fea-
tures: Ignore word boundaries and make every sequence of n characters into a feature (this
will be a lot). 5) Adding an extra feature whenever a word is preceded by “not”. For example
“not amazing” becomes its own feature. 6) Do we really need to eliminate those funny char-
acters in the data loading phase? Might there be useful signal there? 7) Use tf-idf instead of
raw word counts. The tf-idf is calculated as

tfidf(fi) =
FFi

log(DFi)
(1)

where FFi is the feature frequency of feature fi andDFi is the number of document containing
fi. In this way we increase the weight of rare words. Sometimes this scheme helps, sometimes
it makes things worse. You could try using both! [Extra credit points will be awarded in
proportion to how much improvement you achieve.]
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