Homework 4: Kernel Methods

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using software
that typesets mathematics (e.g. BTEX, LyX, or MathJax via iPython), though if you need to you
may scan handwritten work. You may find the minted package convenient for including source code
in your MTEX document. If you are using LiyX, then the listings package tends to work better.

1 Introduction

The problem set begins with a couple problems on kernel methods: the first explores what geometric
information about the data is stored in the kernel matrix, and the second revisits kernel ridge
regression with a direct approach, rather than using the Representer Theorem. At the end of the
assignment you will find an Appendix that reviews some relevant definitions from linear algebra, and
gives some review exercises (not for credit). Next we have a problem that explores an interesting
way to re-express the Pegasos-style SSGD on any /s -regularized empirical risk objective function
(i.e. not just SVM). The new expression also happens to allow efficient updates in the sparse
feature setting. In the next problem, we take a direct approach to kernelizing Pegasos. Finally we
get to our coding problem, in which you’ll have the opportunity to see how kernel ridge regression
works with different kernels on a one-dimensional, highly non-linear regression problem. There is
also an optional coding problem, in which you can code a kernelized SVM and see how it works
on a classification problem with a two-dimensional input space. The problem set ends with two
theoretical problems. The first of these reviews the proof of the Representer Theorem. The second
applies Lagrangian duality to show the equivalence of Tikhonov and Ivanov regularization (this
material is optional).

2 |Optional] Kernel Matrices

The following problem will gives us some additional insight into what information is encoded in the
kernel matrix.

1. [Optional] Consider a set of vectors S = {x1,...,Zn}. Let X denote the matrix whose rows
are these vectors. Form the Gram matrix K = XX7. Show that knowing K is equivalent to
knowing the set of pairwise distances among the vectors in S as well as the vector lengths.
[Hint: The distance between x and y is given by d(z,y) = ||z — y||, and the norm of a vector

z is defined as ||z|| =/(z,z) = VaTx.]


https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings

3 Kernel Ridge Regression

In lecture, we discussed how to kernelize ridge regression using the representer theorem. Here we
pursue a bare-hands approach.

Suppose our input space is ¥ =R% and our output spaceis J = R. Let D = {(21,%1), ..., (Tn,yn)}
be a training set from X x ). We’ll use the “design matrix” X € R™*¢, which has the input vectors

as I'ows:
—x1—

X =
— X, —

Recall the ridge regression objective function:
J(w) = [|[Xw = y[[* + N[wl?,
for A > 0.

1. Show that for w to be a minimizer of J(w), we must have X7 Xw + AMw = XTy. Show that
the minimizer of J(w) is w = (XTX + AI)71XTy. Justify that the matrix XTX + A is
invertible, for A > 0. (The last part should follow easily from the exercises on psd and spd
matrices in the Appendix.)

2. Rewrite X7 Xw + Mw = X7y as w = $(XTy — X7 Xw). Based on this, show that we can
write w = X T« for some a, and give an expression for a.

3. Based on the fact that w = XTq, explain why we say w is “in the span of the data.”

4. Show that o = (A\I + X X7T)~1y. Note that X X7 is the kernel matrix for the standard vector
dot product. (Hint: Replace w by X7« in the expression for «, and then solve for a.)

5. Give a kernelized expression for the Xw, the predicted values on the training points. (Hint:
Replace w by X7« and « by its expression in terms of the kernel matrix X X7T.)

6. Give an expression for the prediction f(z) = z7w* for a new point x, not in the training set.
The expression should only involve x via inner products with other x’s. [Hint: It is often
convenient to define the column vector

to simplify the expression.]



4 [Optional] Pegasos and SSGD for /»-regularized ERM!

Consider the objective function
J(w) = *||w||2 Zﬁ

where /;(w) represents the loss on the ith training point (x;,%;). Suppose /;(w) : R — R is a
convex function. Let’s write

A
Ji(w) = 5wl + biw)

for the one-point approximation to J(w) using the ith training point. J;(w) is probably a very poor
approximation of J(w). However, if we choose ¢ uniformly at random from 1,... n, then we do
have EJ;(w) = J(w). We’ll now show that subgradients of J;(w) are unbiased estimators of some
subgradient of J(w), which is our justification for using SSGD methods.

In the problems below, you may use the following facts about subdifferentials without proof
(as in Homework #3): 1) If f1,..., fm : RY = R are convex functions and f = f; 4+ - + fm,
then df(x) = Of1(x) + -+ + Ofm(z) [additivity|. 2) For o > 0, J (af) (z) = adf(z) [positive
homogeneity].

1. [Optional] For each i = 1,...,n, let g;(w) be a subgradient of J;(w) at w € R%. Let v;(w) be
a subgradient of ¢;(w) at w. Give an expression for g;(w) in terms of w and v;(w)

2. [Optional] Show that Eg;(w) € 0J(w), where the expectation is over the randomly selected
i€1,...,n. (In words, the expectation of our subgradient of a randomly chosen J;(w) is in
the subdifferential of J.)

3. [Optional] Now suppose we are carrying out SSGD with the Pegasos step-size n(Y) = 1/ (\t),
t=1,2,...., starting from w") = 0. In the #’th step, suppose we select the ith point and thus
take the step w1 = w® — 51 g, (w®). Let’s write v(*) = v;(w®), which is the subgradient
of the loss part of J;(w®) that is used in step t. Show that

t
1
@+ _ LN o
YT TN ;v

[Hint: One approach is proof by induction. First show it’s true for w(?). Then assume it’s
true for w® and prove it’s true for w**1). This will prove that it’s true for all t = 2,3, ...
by induction.

IThis problem is based on Shalev-Shwartz and Ben-David’s book Understanding Machine Learning: From Theory
to Algorithms, Sections 14.5.3, 15.5, and 16.3).


http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/index.html
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/index.html

(a) [Optional] We can use the previous result to get a nice equivalent formulation of Pega-
sos. Let 80 = S0 (). Then w1 = —L0t+1) Then Pegasos from the previous
homework is equivalent to Algorithm 1. Similar to the w = sW decomposition from

Algorithm 1: Pegasos Algorithm Reformulation

input: Training set (z1,41),---;(Tn,yn) € R x {~1,1} and A > 0.
M) =(0,...,0) € R?
w! = (0,...,0) € R?
t=1 # step number
repeat

randomly choose j in 1,...,n

if yj <w(t),$]’> <1

oD =0 4 gz,

else
9(t+1) — H(t)
endif
w“*”::43%9@+m # need not be explicitly computed
t=t+1
until bored
return w“):-—A@£D9“)

homework #3, this decomposition gives the opportunity for significant speedup. Ex-
plain how Algorithm 1 can be implemented so that, if «; has s nonzero entries, then we
only need to do O(s) memory accesses in every pass through the loop.

5 Kernelized Pegasos

Recall the SVM objective function
min é||wH2 + e Zm:max (0,1 — y;w'z;)
weERM 2 m p— ’ ! !

and the Pegasos algorithm on the training set (1,%1),..., (Zn,yn) € R? x {—1,1} (Algorithm 2).

Note that in every step of Pegasos, we rescale w® by (1 — n(t))\) = (1 — %) € (0,1). This
“shrinks” the entries of w*) towards 0, and it’s due to the regularization term % [wl[|3 in the SVM
objective function. Also note that if the example in a particular step, say (z;,y;), is not classified
with the required margin (i.e. if we don’t have margin ijf x; > 1), then we also add a multiple of

x; to w® to end up with w**+). This part of the adjustment comes from the empirical risk. Since



Algorithm 2: Pegasos Algorithm

input: Training set (z1,%1),...,(Zn,yn) € R* x {~1,1} and A >0.
w! = (0,...,0) € R?
t=0 # step number

repeat
t=t+1
n® =1/(t\) # step multiplier
randomly choose j in 1,...,n

if yj(w®,z;) <1
wttD) = (1— n(t))\)w(t) + n(t)ijj
else
wttD) — (1— n(t))\)w(t)
until bored
return w®

we initialize with w(?) = 0, we are guaranteed that we can always write>

n
w® = Z al(.t)xi
i=1

after any number of steps t. When we kernelize Pegasos, we’ll be tracking a(*) = (agt), ce a;t))T

directly, rather than w.

1. Kernelize the expression for the margin. That is, show that y; <w(t), l’j> = yjKj.a(t), where
k(z;,x;) = (z;,2;) and K;. denotes the jth row of the kernel matrix K corresponding to
kernel k.

2. Suppose that w(*) = Dy agt)xi and for the next step we have selected a point (z;,y;) that
does not have a margin violation. Give an update expression for a(*t1) so that w(t+?) =

n (t+1)
dlim1 i

3. Repeat the previous problem, but for the case that (x;,y;) has a margin violation. Then
give the full pseudocode for kernelized Pegasos. You may assume that you receive the kernel

2Note: This resembles the conclusion of the representer theorem, but it’s saying something different. Here, we are
saying that the w(t) after every step of the Pegasos algorithm lives in the span of the data. The representer theorem
says that a mathematical minimizer of the SVM objective function (i.e. what the Pegasos algorithm would converge
to after infinitely many steps) lies in the span of the data. If, for example, we had chosen an initial w®) that is NOT
in the span of the data, then none of the w(*)’s from Pegasos would be in the span of the data. However, we know
Pegasos converges to a minimum of the SVM objective. Thus after a very large number of steps, w® would be very
close to being in the span of the data. It’s the gradient of the regularization term that pulls us back towards the span
of the data. This is basically because the regularization is driving all components towards 0, while the empirical risk
updates are only pushing things away from 0 in directions in the span of the data.



matrix K as input, along with the labels y;,...,y, € {—1,1}

4. [Optional] While the direct implementation of the original Pegasos required updating all en-
tries of w in every step, a direct kernelization of Algorithm 2, as we have done above, leads
to updating all entries of « in every step. Give a version of the kernelized Pegasos algorithm
that does not suffer from this inefficiency. You may try splitting the scale and direction sim-
ilar to the approach of the previous problem set, or you may use a decomposition based on
Algorithm 1 from the optional problem 4 above.

6 Kernel Methods: Let’s Implement

In this section you will get the opportunity to code kernel ridge regression and, optionally, kernelized
SVM. To speed things along, we’ve written a great deal of support code for you, which you can find
in the Jupyter notebooks in the homework zip file.

6.1 One more review of kernelization can’t hurt (no problems)

Consider the following optimization problem on a data set (z1,1),...(2n,yn) € R4 x V:
min, R (J(w,w)) S L((w,z1) ... (w,2n))
where w, 21, ..., 7, € R and (-, ) is the standard inner product on R%. The function R : [0, c0) —

R is nondecreasing and gives us our regularization term, while L : R® — R is arbitrary® and
gives us our loss term. We noted in lecture that this general form includes soft-margin SVM
and ridge regression, though not lasso regression. Using the representer theorem, we showed if the
optimization problem has a solution, there is always a solution of the form w = Z?:l a;x;, for some
a € R™. Plugging this into the our original problem, we get the following “kernelized” optimization

problem:
min R (VaTKa) + L(Ka),
acR”

where K € R™*™ is the Gram matrix (or “kernel matrix”) defined by K;; = k(z;,z;) = (®;, x;).
Predictions are given by

f(x) = Zaik(l‘i,x)v

and we can recover the original w € R? by w = Z?zl Q;x;.

The “kernel trick” is to swap out occurrences of the kernel k (and the corresponding Gram
matrix K) with another kernel. For example, we could replace k(x;,x;) = (z;,2;) by k'(z;,2;) =
((x:),(x;)) for an arbitrary feature mapping ¢ : R? — RP. In this case, the recovered w € R”
would be w = Y7 | ;9 (x;) and predictions would be (w,¢(z;)).

3You may be wondering “Where are the y;’s?”. They’re built into the function L. For example, a square loss on a

training set of size 3 could be represented as L(s1, s2,s3) = % [(51 —y1)? 4 (s2 —y2)% + (s3 — y3)3]7 where each s;

stands for the ith prediction (w, z;).



More interestingly, we can replace k by another kernel k" (x;, z;) for which we do not even know
or cannot explicitly write down a corresponding feature map 1. Our main example of this is the

RBF kernel H /”2
r—x
k N — |
(o) =exp (12510,

for which the corresponding feature map v is infinite dimensional. In this case, we cannot recover
w since it would be infinite dimensional. Predictions must be done using o € R", with f(z) =
Z?:l aik(xiv :,C)

Your implementation of kernelized methods below should not make any reference to w or to
a feature map 1. Your “learning” routine should return «, rather than w, and your prediction
function should also use « rather than w. This will allow us to work with kernels that correspond
to infinite-dimensional feature vectors.

6.2 Kernels and Kernel Machines

There are many different families of kernels. So far we’ve spoken about linear kernels, RBF /Gaus-
sian kernels, and polynomial kernels. The last two kernel types have parameters. In this section,
we’ll implement these kernels in a way that will be convenient for implementing our kernelized ML
methods later on. For simplicity, and because it is by far the most common situation?, we will
assume that our input space is X = R?. This allows us to represent a collection of n inputs in a
matrix X € R"*?, as usual.

1. Write functions that compute the RBF kernel krgpp(o)(z,2') = exp (—|z — 2'||?/ (20?)) and
the polynomial kernel kp, o1y (q,q) (2, 2") = (a + (z,2'))". The linear kernel kyinear (x, 2) = (z,2'),
has been done for you in the support code. Your functions should take as input two matri-
ces W € R"*4 and X € R™*% and should return a matrix M € R™*"2 where M;; =
k(W;.,X,.). In words, the (¢, 7)’th entry of M should be kernel evaluation between w; (the
ith row of W) and x; (the jth row of X). The matrix M could be called the “cross-kernel”
matrix, by analogy to the cross-covariance matrix. For the RBF kernel, you may use the scipy
function cdist (X1, X2, ’ sqeuclidean’) in the package scipy.spatial.distance or
(with some more work) write it in terms of the linear kernel (Bauckhage’s article on calculating
Euclidean distance matrices may be helpful).

2. Use the linear kernel function defined in the code to compute the kernel matrix on the set of
points g € Dx = {—4,—1,0,2}. Include both the code and the output.

3. Suppose we have the data set D = {(—4,2),(—1,0),(0,3),(2,5)}. Then by the representer
theorem, the final prediction function will be in the span of the functions z +— k(x,x) for
xg € Dx = {—4,-1,0,2}. This set of functions will look quite different depending on the
kernel function we use.

(a) Plot the set of functions & — kiipear (20, z) for zy € Dx and for x € [—6,6].
(b) Plot the set of functions =+ kpely(1,3) (20, ) for zg € Dx and for = € [—6, 6].
(c) Plot the set of functions = + krpr(1) (@0, ) for o € Dx and for z € [-6, 6].

4We are noting this because one interesting aspect of kernel methods is that they can act directly on an arbitrary
input space X (e.g. text files, music files, etc.), so long as you can define a kernel function k : X x X — R. But we’ll
not consider that case here.


https://en.wikipedia.org/wiki/Cross-covariance
https://multimedia-pattern-recognition.info/fileadmin/Websites/mmprec/uploads/docs/Bauckhage/np-sp-rec-edm.pdf

6.3

(d) By the representer theorem, the final prediction function will be of the form f(z) =
Yo, aik(wi, x), where x1,...,2, € X are the inputs in the training set. This is a
special case of what is sometimes called a kernel machine, which is a function of the
form f(z) = >I_, aik(pi, x), where py, ..., u, € X are called prototypes or centroids
(Murphy’s book Section 14.3.1.). In the special case that the kernel is an RBF kernel,
we get what’s called an RBF Network (proposed by Broomhead and Lowe in 1988).
We can see that the prediction functions we get from our kernel methods will be kernel
machines in which each input in the training set x1,...,x, serves as a prototype point.
Complete the predict function of the class Kernel_ Machine in the skeleton code.
Construct a Kernel_Machine object with the RBF kernel (sigma=1), with prototype
points at —1,0,1 and corresponding weights 1, —1, 1. Plot the resulting function.

Note: For this problem, and for other problems below, it may be helpful to use partial
application on your kernel functions. For example, if your polynomial kernel function
has signature polynomial_kernel (W, X, offset, degree), you can write k
= functools. partial (polynomial_kernel, offset=2, degree=2), and
then a call to k (W, X) is equivalent to polynomial_kernel (W, X, offset=2,
degree=2), the advantage being that the extra parameter settings are built into k (W, X) .
This can be convenient so that you can have a function that just takes a kernel function
k (W, X) and doesn’t have to worry about the parameter settings for the kernel.

Kernel Ridge Regression

In the zip file for this assignment, you’ll find a training and test set, along with some skeleton code.
We're considering a one-dimensional regression problem, in which X =) = A = R. We'll fit this
data using kernelized ridge regression, and we’ll compare the results using several different kernel
functions. Because the input space is one-dimensional, we can easily visualize the results.

1.

Plot the training data. You should note that while there is a clear relationship between x and
Yy, the relationship is not linear.

. In a previous problem, we showed that in kernelized ridge regression, the final prediction

function is f(z) = Y1, aik(z;,x), where a = (A + K) 'y and K € R™" is the kernel
matrix of the training data: K;; = k(z;,x;), for z1,...,2,. In terms of kernel machines,
«; is the weight on the kernel function evaluated at the prototype point x;. Complete the
function train_kernel_ridge_regression so that it performs kernel ridge regression
and returns a Kernel_Machine object that can be used for predicting on new points.

. Use the code provided to plot your fits to the training data for the RBF kernel with a fixed

regularization parameter of 0.0001 for 3 different values of sigma: 0.01, 0.1, and 1.0. What
values of sigma do you think would be more likely to over fit, and which less?

Use the code provided to plot your fits to the training data for the RBF kernel with a fixed
sigma of 0.02 and 4 different values of the regularization parameter A: 0.0001, 0.01, 0.1, and
2.0. What happens to the prediction function as A — oco?

. Find the best hyperparameter settings (including kernel parameters and the regularization

parameter) for each of the kernel types. Summarize your results in a table, which gives


https://davidrosenberg.github.io/ml2015/docs/4c.kernels.pdf#page=16
http://sci2s.ugr.es/keel/pdf/algorithm/articulo/1988-Broomhead-CS.pdf
https://en.wikipedia.org/wiki/Partial_application
https://en.wikipedia.org/wiki/Partial_application

6.4

training error and test error for each setting. Include in your table the best settings for each
kernel type, as well as nearby settings that show that making small change in any one of the
hyperparameters in either direction will cause the performance to get worse. You should use
average square loss on the test set to rank the parameter settings. To make things easier
for you, we have provided an sklearn wrapper for the kernel ridge regression function we
have created so that you can use sklearn’s GridSearchCV. Note: Because of the small dataset
size, these models can be fit extremely fast, so there is no excuse for not doing extensive
hyperparameter tuning.

. Plot your best fitting prediction functions using the polynomial kernel and the RBF kernel.

Use the domain = € (—0.5,1.5). Comment on the results.

The data for this problem was generated as follows: A function f : R — R was chosen. Then
to generate a point (z,y), we sampled x uniformly from (0,1) and we sampled € ~ N’ (O7 0.12)
(so Var(e) = 0.12). The final point is (z, f(z) + €). What is the Bayes decision function and

the Bayes risk for the loss function ¢ (§,y) = (§ — y)2.

. [Optional] Attempt to improve performance by using different kernel functions. Chapter

4 from Rasmussen and Williams’ book Gaussian Processes for Machine Learning describes
many kernel functions, though they are called covariance functions in that book (but they
have exactly the same definition). Note that you may also create a kernel function by first
explicitly creating feature vectors, if you are so inspired.

. [Optional] Use any machine learning model you like to get the best performance you can.

[Optional] Kernelized Support Vector Machines with Kernelized Pe-
gasos

. [Optional] Load the SVM training and test data from the zip file. Plot the training data

using the code supplied. Are the data linearly separable? Quadratically separable? What if
we used some RBF kernel?

. [Optional] Unlike for kernel ridge regression, there is no closed-form solution for SVM clas-

sification (kernelized or not). Implement kernelized Pegasos. Because we are not using a
sparse representation for this data, you will probably not see much gain by implementing the
“optimized” versions described in the problems above.

. [Optional] Find the best hyperparameter settings (including kernel parameters and the regu-

larization parameter) for each of the kernel types. Summarize your results in a table, which
gives training error and test error (i.e. average 0/1 loss) for each setting. Include in your
table the best settings for each kernel type, as well as nearby settings that show that making
small change in any one of the hyperparameters in either direction will cause the performance
to get worse. You should use the 0/1 loss on the test set to rank the parameter settings.

. [Optional] Plot your best fitting prediction functions using the linear, polynomial, and the

RBF kernel. The code provided may help.


http://www.gaussianprocess.org/gpml/chapters/RW4.pdf
http://www.gaussianprocess.org/gpml/chapters/RW4.pdf
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Representer Theorem

Recall the following theorem from lecture:

Theorem (Representer Theorem). Let

J(w) = R(lwl) + L ({w, ¢ (1)), - -, (w, ¥ (xn))) ,

where R : RZ% — R is nondecreasing (the regularization term) and L : R™ — R is arbitrary (the
loss term). If J(w) has a minimizer, then it has a minimizer of the form

w* = Zl a;(x;).

Furthermore, if R is strictly increasing, then all minimizers have this form.

Note: There is nothing in this theorem that guarantees J(w) has a minimizer at all. If there is

no minimizer, then this theorem does not tell us anything.

In this problem, we will prove the part of the Representer theorem for the case that R is strictly

increasing.

8

1. Let M be a closed subspace of a Hilbert space H. For any x € H, let mo = Proj,,;z be the

projection of z onto M. By the Projection Theorem, we know that (z —mg) L M. Then by
the Pythagorean Theorem, we know ||z||? = ||mgl|* + ||z — mg|*>. From this we concluded in
lecture that ||mo|| < ||z||. Show that we have ||mqg]|| = ||z|| only when mo = . (Hint: Use the
postive-definiteness of the inner product: (x,z) > 0 and (z,z) =0 <= z =0, and the fact
that we’re using the norm derived from such an inner product.)

. Give the proof of the Representer Theorem in the case that R is strictly increasing. That

is, show that if R is strictly increasing, then all minimizers have this form claimed. (Hint:
Consider separately the cases that ||w|| < |[Jw*|| and the case |Jw| = |Jw*]].)

. |Optional| Suppose that R : RZ® — R and L : R® — R are both convex functions. Use

properties of convex functions to show that w — L ({(w,¥(z1)),..., (w,¥(z,))) is a convex
function of w, and then that J(w) is also a convex function of w. For simplicity, you may
assume that our feature space is R?, rather than a generic Hilbert space. You may also use
the fact that the composition of a convex function and an affine function is convex. That is,
suppose f : R" - R, A € R"™™ and b € R". Define g : R™ — R by g(z) = f (Az + D).
Then if f is convex, then so is g. From this exercise, we can conclude that if L and R are
convex, then J does have a minimizer of the form w* = Y"1 | a9 (z;), and if R is also strictly
increasing, then all minimizers of J have this form.

Ivanov and Tikhonov Regularization

In lecture there was a claim that the Ivanov and Tikhonov forms of ridge and lasso regression are
equivalent. We will now prove a more general result.

10



8.1 Tikhonov optimal implies Ivanov optimal

Let ¢ : F — R be any performance measure of f € F, and let  : F — [0,00) be any
complexity measure. For example, for ridge regression over the linear hypothesis space F =

{fw(:c) =wlz |we Rd}, we would have ¢(f,,) = %Z?:l (wai — y¢)2 and Q(f,) = wlw.

1. Suppose that for some A > 0 we have the Tikhonov regularization solution
[ € argmin [¢(f) + AQ(f)] .- (1)
fer

Show that f* is also an Ivanov solution. That is, 3r > 0 such that

/¥ € argmin ¢(f) subject to Q(f) < r. (2)
feF

(Hint: Start by figuring out what r should be. Then one approach is proof by contradiction:
suppose f* is not the optimum in (2) and show that contradicts the fact that f* solves (1).)

8.2 [Optional] Ivanov optimal implies Tikhonov optimal (when we have
Strong Duality)

For the converse, we will restrict our hypothesis space to a parametric set. That is,
F={fu(@): X > R|weR'}.

So we will now write ¢ and § as functions of w € R?.
Let w™ be a solution to the following Ivanov optimization problem:

minimize o(w)
subject to Qw) <r,

for any r > 0. Assume that strong duality holds for this optimization problem and that the dual
solution is attained (e.g. Slater’s condition would suffice). Then we will show that there exists a
A > 0 such that w* € argmin cga [¢(w) + AQ(w)].

1. [Optional| Write the Lagrangian L(w, \) for the Ivanov optimization problem.

2. [Optional] Write the dual optimization problem in terms of the dual objective function g(\),
and give an expression for g(A). [Writing g(A) as an optimization problem is expected - don’t
try to solve it.]

3. [Optional] We assumed that the dual solution is attained, so let \* € argmax,~qg(A). We
also assumed strong duality, which implies ¢(w*) = g(\*). Show that the minimum in the
expression for g(A*) is attained at w*. [Hint: You can use the same approach we used when
we derived that strong duality implies complementary slackness.] Conclude the proof by
showing that for the choice of A = A*, we have w* € argmin,cga [p(w) + A Q(w)].

11


https://davidrosenberg.github.io/mlcourse/Archive/2016/Lectures/3b.convex-optimization.pdf%5C#page=30

4. [Optional] The conclusion of the previous problem allows A = 0, which means we’re not
actually regularizing at all. This will happen when the constraint in the Ivanov optimization
problem is not active. That is, we’ll need to take A = 0 whenever the solution w* to the
Ivanov optimization problem has Q(w*) < r. Show this. However, consider the following
condition (suggested in [?]):

inf ¢(w) < inf w).
Juf | $(w) {wm(w)gr}aﬁ( )
This condition simply says that we can get a strictly smaller performance measure (e.g. we
can fit the training data strictly better) if we remove the Ivanov regularization. With this
additional condition, show that if \* € argmax,~,g(A) then A* > 0. Moreover, show that
the solution w* satisfies Q(w*) = r — that is, the Ivanov constraint is active.

8.3 [Optional] Ivanov implies Tikhonov for Ridge Regression.

To show that Ivanov implies Tikhonov for the ridge regression problem (square loss with ¢ regu-
larization), we need to demonstrate strong duality and that the dual optimum is attained. Both of
these things are implied by Slater’s constraint qualifications.

1. [Optional] Show that the Ivanov form of ridge regression

n
L 2
minimize E (yi —wai)
i=1

subject to wlw <.

is a convex optimization problem with a strictly feasible point, so long as r > 0. (Thus im-
plying the Ivanov and Tikhonov forms of ridge regression are equivalent when r > 0.)

A Positive Semidefinite Matrices

In statistics and machine learning, we use positive semidefinite matrices a lot. Let’s recall some
definitions from linear algebra that will be useful here:

Definition. A set of vectors {z1,...,z,} is orthonormal if (z;,z;) = 1 for any i € {1,...,n}
(i.e. x; has unit norm), and for any 4, j € {1,...,n} with ¢ # j we have (z;,z;) =0 (i.e. z; and z;
are orthogonal).

Note that if the vectors are column vectors in a Euclidean space, we can write this as QL‘ZT:EJ‘ =
1(i # j) for all i,5 € {1,...,n}.

Definition. A matrix is orthogonal if it is a square matrix with orthonormal columns.
It follows from the definition that if a matrix M € R™*™ is orthogonal, then MT M = I, where
I is the n x n identity matrix. Thus M7 = M !, and so MMT =T as well.

Definition. A matrix M is symmetric if M = M7T.
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Definition. For a square matrix M, if Mv = Av for some column vector v and scalar A, then v is
called an eigenvector of M and A is the corresponding eigenvalue.

Theorem (Spectral Theorem). A real, symmetric matric M € R"™ ™ can be diagonalized as
M = QXQT, where Q € R™" is an orthogonal matriz whose columns are a set of orthonormal
etgenvectors of M, and X is a diagonal matriz of the corresponding eigenvalues.

Definition. A real, symmetric matrix M € R"™*" is positive semidefinite (psd) if for any
xz e R™,
2T Mz > 0.

Note that unless otherwise specified, when a matrix is described as positive semidefinite, we are
implicitly assuming it is real and symmetric (or complex and Hermitian in certain contexts, though

not here).
As an exercise in matrix multiplication, note that for any matrix A with columns ay,...,aq,
that is
nxd
A=|a; - aq] € R"Y
we have
a?Mal a?Mag e a?Mad
r az May as May -+ a3 Mag
A" MA = .
T T T
ayjMay ay;May --- ay;Mag

So M is psd if and only if for any A € R"*?, we have diag(ATMA) = (a?Mal, . ,adTMad)T =0,
where > is elementwise inequality, and 0 is a d x 1 column vector of 0’s .

1. Use the definition of a psd matrix and the spectral theorem to show that all eigenvalues of a
positive semidefinite matrix M are non-negative. [Hint: By Spectral theorem, ¥ = QT MQ
for some ). What if you take A = @ in the “exercise in matrix multiplication” described
above?|

2. In this problem, we show that a psd matrix is a matrix version of a non-negative scalar, in
that they both have a “square root”. Show that a symmetric matrix M can be expressed as
M = BBT for some matrix B, if and only if M is psd. [Hint: To show M = BBT implies M
is psd, use the fact that for any vector v, v7v > 0. To show that M psd implies M = BBT
for some B, use the Spectral Theorem.|

B Positive Definite Matrices

Definition. A real, symmetric matrix M € R™*" is positive definite (spd) if for any z € R"
with x # 0,
Mz > 0.
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. Show that all eigenvalues of a symmetric positive definite matrix are positive. [Hint: You can
use the same method as you used for psd matrices above.]

. Let M be a symmetric positive definite matrix. By the spectral theorem, M = QXQ7, where
3 is a diagonal matrix of the eigenvalues of M. By the previous problem, all diagonal entries
of ¥ are positive. If ¥ = diag(01,...,0,), then ¥7! = diag (o7 ',...,0,,'). Show that the
matrix QX 1Q7 is the inverse of M.

. Since positive semidefinite matrices may have eigenvalues that are zero, we see by the previous
problem that not all psd matrices are invertible. Show that if M is a psd matrix and I is
the identity matrix, then M + AI is symmetric positive definite for any A > 0, and give an
expression for the inverse of M + AI.

. Let M and N be symmetric matrices, with M positive semidefinite and N positive definite.
Use the definitions of psd and spd to show that M + N is symmetric positive definite. Thus
M + N is invertible. (Hint: For any x # 0, show that 27 (M + N)x > 0. Also note that
2T (M + N)x = 2" Mz + 2T Nax.)
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