
Machine Learning – Brett Bernstein

Recitation 1: Gradients and Directional Derivatives

Intro Question

1. We are given the data set (x1, y1), . . . , (xn, yn) where xi ∈ Rd and yi ∈ R. We want
to fit a linear function to this data by performing empirical risk minimization. More
precisely, we are using the hypothesis space F = {f(x) = wTx | w ∈ Rd} and the loss
function `(a, y) = (a− y)2. Given an initial guess w̃ for the empirical risk minimizing
parameter vector, how could we improve our guess?
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Figure 1: Data Set With d = 1

Multivariable Differentiation

Differential calculus allows us to convert non-linear problems into local linear problems, to
which we can apply the well-developed techniques of linear algebra. Here we will review
some of the important concepts needed in the rest of the course.
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Single Variable Differentiation

To gain intuition, we first recall the single variable case. Let f : R → R be differentiable.
The derivative

f ′(x) = lim
h→0

f(x + h)− f(x)

h

gives us a local linear approximation of f near x. This is seen more clearly in the following
form:

f(x + h) = f(x) + hf ′(x) + o(h) as h→ 0,

where o(h) represents a function g(h) with g(h)/h→ 0 as h→ 0. This can be used to show
that if x is a local extremum of f then f ′(x) = 0. Points with f ′(x) = 0 are called critical
points.

f(t)− (f(x0) + (t− x0)f
′(x0))

(x0, f(x0))

f(t)

f(x0) + (t− x0)f
′(x0)

Figure 2: 1D Linear Approximation By Derivative

Multivariate Differentiation

More generally, we will look at functions f : Rn → R. In the single-variable case, the
derivative was just a number that signified how much the function increased when we moved
in the positive x-direction. In the multivariable case, we have many possible directions we
can move along from a given point x = (x1, . . . , xn) ∈ Rn.
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Figure 3: Multiple Possible Directions for f : R2 → R

If we fix a direction u we can compute the directional derivative f ′(x;u) as

f ′(x;u) = lim
h→0

f(x + hu)− f(x)

h
.

This allows us to turn our multidimensional problem into a 1-dimensional computation. For
instance,

f(x + hu) = f(x) + hf ′(x;u) + o(h),

mimicking our earlier 1-d formula. This says that nearby x we can get a good approximation
of f(x+hu) using the linear approximation f(x)+hf ′(x;u). In particular, if f ′(x;u) < 0 (such
a u is called a descent direction) then for sufficiently small h > 0 we have f(x+ hu) < f(x).
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Figure 4: Directional Derivative as a Slope of a Slice

Let ei = (

i−1︷ ︸︸ ︷
0, 0, . . . , 0, 1, 0, . . . , 0) be the ith standard basis vector. The directional deriva-

tive in the direction ei is called the ith partial derivative and can be written in several
ways:

∂

∂xi

f(x) = ∂xi
f(x) = ∂if(x) = f ′(x; ei).

We say that f is differentiable at x if

lim
v→0

f(x + v)− f(x)− gTv

‖v‖2
= 0,

for some g ∈ Rn (note that the limit for v is taken in Rn). This g is uniquely determined,
and is called the gradient of f at x denoted by ∇f(x). It is easy to show that the gradient
is the vector of partial derivatives:

∇f(x) =

 ∂x1f(x)
...

∂xnf(x)

 .
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The kth entry of the gradient (i.e., the kth partial derivative) is the approximate change in
f due to a small positive change in xk. Sometimes we will split the variables of f into two
parts. For instance, we could write f(x,w) with x ∈ Rp and w ∈ Rq. It is often useful to
take the gradient with respect to some of the variables. Here we would write ∇x or ∇w to
specify which part:

∇xf(x,w) :=

 ∂x1f(x,w)
...

∂xpf(x,w)

 and ∇wf(x,w) :=

 ∂w1f(x,w)
...

∂wqf(x,w)

 .

Analogous to the univariate case, can express the condition for differentiability in terms
of a gradient approximation:

f(x + v) = f(x) +∇f(x)Tv + o(‖v‖2).

The approximation f(x + v) ≈ f(x) +∇f(x)Tv gives a tangent plane at the point x as we
let v vary.

Figure 5: Tangent Plane for f : R2 → R
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If f is differentiable, we can use the gradient to compute an arbitrary directional deriva-
tive:

f ′(x;u) = ∇f(x)Tu.

From this expression we can quickly see that (assuming ∇f(x) 6= 0)

arg max
‖u‖2=1

f ′(x;u) =
∇f(x)

‖∇f(x)‖2
and arg min

‖u‖2=1

f ′(x;u) = − ∇f(x)

‖∇f(x)‖2
.

In words, we say that the gradient points in the direction of steepest ascent, and the negative
gradient points in the direction of steepest descent.

As in the 1-dimensional case, if f : Rn → R is differentiable and x is a local extremum of
f then we must have ∇f(x) = 0. Points x with ∇f(x) = 0 are called critical points. As we
will see later in the course, if a function is differentiable and convex, then a point is critical
if and only if it is a global minimum.

Figure 6: Critical Points of f : R2 → R

Computing Gradients

A simple method to compute the gradient of a function is to compute each partial derivative
separately. For example, if f : R3 → R is given by

f(x1, x2, x3) = log(1 + ex1+2x2+3x3)
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then we can directly compute

∂x1f(x1, x2, x3) =
ex1+2x2+3x3

1 + ex1+2x2+3x3
, ∂x2f(x1, x2, x3) =

2ex1+2x2+3x3

1 + ex1+2x2+3x3
, ∂x3f(x1, x2, x3) =

3ex1+2x2+3x3

1 + ex1+2x2+3x3

and obtain

∇f(x1, x2, x3) =


ex1+2x2+3x3

1 + ex1+2x2+3x3

2ex1+2x2+3x3

1 + ex1+2x2+3x3

3ex1+2x2+3x3

1 + ex1+2x2+3x3

 .

Alternatively, we could let w = (1, 2, 3)T and write

f(x) = log(1 + ew
T x).

Then we can apply a version of the chain rule which says that if g : R→ R and h : Rn → R
are differentiable then

∇g(h(x)) = g′(h(x))∇h(x).

Applying the chain rule twice (for log and exp) we obtain

∇f(x) =
1

1 + ewT x
ew

T xw,

where we use the fact that ∇x(wTx) = w. This last expression is more concise, and is more
amenable to vectorized computation in many languages.

Another useful technique is to compute a general directional derivative and then infer
the gradient from the computation. For example, let f : Rn → R be given by

f(x) = ‖Ax− y‖22 = (Ax− y)T (Ax− y) = xTATAx− 2yTAx + yTy,

for some A ∈ Rm×n and y ∈ Rm. Assuming f is differentiable (so that f ′(x; v) = ∇f(x)Tv)
we have

f(x + tv) = (x + tv)TATA(x + tv)− 2yTA(x + tv) + yTy

= xTATAx + t2vTATAv + 2txTATAv − 2yTAx− 2tyTAv + yTy

= f(x) + t(2xTATA− 2yTA)v + t2vTATAv.

Thus we have
f(x + tv)− f(x)

t
= (2xTATA− 2yTA)v + tvTATAv.

Taking the limit as t→ 0 shows

f ′(x; v) = (2xTATA− 2yTA)v =⇒ ∇f(x) = (2xTATA− 2yTA)T = 2ATAx− 2ATy.
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Assume the columns of the data matrix A have been centered (by subtracting their respective
means). We can interpret ∇f(x) = 2AT (Ax− y) as (up to scaling) the covariance between
the features and the residual.

Using the above calculation we can determine the critical points of f . Let’s assume
here that A has full column rank. Then ATA is invertible, and the unique critical point is
x = (ATA)−1ATy. As we will see later in the course, this is a global minimum since f is
convex (the Hessian of f satisfies ∇2f(x) = 2ATA � 0).

(?) Proving Differentiability

With a little extra work we can make the previous technique give a proof of differentiability.
Using the computation above, we can rewrite f(x + v) as f(x) plus terms depending on v:

f(x + v) = f(x) + (2xTATA− 2yTA)v + vTATAv.

Note that
vTATAv

‖v‖2
=
‖Av‖22
‖v‖|2

≤ ‖A‖
2
2‖v‖22
‖v‖2

= ‖A‖22‖v‖2 → 0,

as ‖v‖2 → 0. (This section is starred since we used the matrix norm ‖A‖2 here.) This shows
f(x + v) above has the form

f(x + v) = f(x) +∇f(x)Tv + o(‖v‖2).

This proves that f is differentiable and that

∇f(x) = 2ATAx− 2ATy.

Another method we could have used to establish differentiability is to observe that the partial
derivatives are all continuous. This relies on the following theorem.

Theorem 1. Let f : Rn → R and suppose ∂xi
f(x) : Rn → R is continuous for all x ∈ Rn

and all i = 1, . . . , n. Then f is differentiable.
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