Introduction to Statistical Learning Theory

David S. Rosenberg

New York University

January 23, 2018

Decision Theory: High Level View

What types of problems are we solving?

- In data science problems, we generally need to:
 - Make a decision
 - Take an action
 - Produce some output
- Have some evaluation criterion

Actions

Definition

An action is the generic term for what is produced by our system.

Examples of Actions

- Produce a 0/1 classification [classical ML]
- Reject hypothesis that $\theta = 0$ [classical Statistics]
- Written English text [image captioning, speech recognition, machine translation]
- What's an action for predicting where a storm will be in 3 hours?
- What's an action for a self-driving car?

Evaluation Criterion

Decision theory is about finding "optimal" actions, under various definitions of optimality.

Examples of Evaluation Criteria

- Is classification correct?
- Does text transcription exactly match the spoken words?
 - Should we give partial credit? How?
- How far is the storm from the prediction location? [for point prediction]
- How likely is the storm's location under the prediction? [for density prediction]

Real Life: Formalizing a Business Problem

- First two steps to formalizing a problem:
 - ① Define the action space (i.e. the set of possible actions)
 - Specify the evaluation criterion.
- Formalization may evolve gradually, as you understand the problem better

Inputs

Most problems have an extra piece, going by various names:

- Inputs [ML]
- Covariates [Statistics]

Examples of Inputs

- A picture
- A storm's historical location and other weather data
- A search query

"Outcomes" or "Output" or "Label"

Inputs often paired with outputs or outcomes or labels

Examples of outcomes/outputs/labels

- Whether or not the picture actually contains an animal
- The storm's location one hour after query
- Which, if any, of suggested the URLs were selected

Typical Sequence of Events

Many problem domains can be formalized as follows:

- **1** Observe input *x*.
- 2 Take action a.
- **o** Observe outcome *y*.
- **②** Evaluate action in relation to the outcome (via a loss function $\ell(a, y)$)

Note

- Outcome y is often **independent** of action a
- But this is **not always the case**:
 - search result ranking
 - automated driving

Formalization: The Spaces

The Three Spaces:

- ullet Input space: χ
- ullet Action space: ${\mathcal A}$
- Outcome space: y

Concept check:

- What are the spaces for linear regression?
- What are the spaces for logistic regression?
- What are the spaces for a support vector machine?

Some Formalization

The Spaces

• \mathfrak{X} : input space

• y: outcome space

A: action space

Prediction Function (or "decision function")

A prediction function (or decision function) gets input $x \in \mathcal{X}$ and produces an action $a \in \mathcal{A}$:

$$f: \mathcal{X} \rightarrow \mathcal{A}$$
 $x \mapsto f(x)$

Loss Function

A loss function evaluates an action in the context of the outcome y.

$$\ell: \mathcal{A} \times \mathcal{Y} \rightarrow \mathbf{R}$$
 $(a,y) \mapsto \ell(a,y)$

Evaluating a Prediction Function

- ullet Loss function ℓ evaluates a single action
- How to evaluate the prediction function as a whole?
- We will use the standard statistical learning theory framework.

A Simplifying Assumption

- Assume action has no effect on the output
 - includes all traditional prediction problems
 - what about stock market prediction?
 - what about stock market investing?
- What about fancier problems where this does not hold?
 - often can be reformulated or "reduced" to problems where it does hold
 - see literature on reinforcement learning

Setup for Statistical Learning Theory

- Assume there is a data generating distribution $P_{X \times Y}$.
- All input/output pairs (x, y) are generated i.i.d. from $P_{X \times Y}$.
- Want prediction function f(x) that generally "does well on average":

 $\ell(f(x), y)$ is usually small, in some sense

• How can we formalize this?

The Risk Functional

Definition

The **risk** of a prediction function $f: \mathcal{X} \to \mathcal{A}$ is

$$R(f) = \mathbb{E}\ell(f(x), y).$$

In words, it's the expected loss of f on a new exampe (x,y) drawn randomly from $P_{\mathfrak{X}\times\mathfrak{Y}}$.

Risk function cannot be computed

Since we don't know $P_{\chi_{\chi_y}}$, we cannot compute the expectation.

But we can estimate it...

The Bayes Prediction Function

Definition

A Bayes prediction function $f^*: \mathcal{X} \to \mathcal{A}$ is a function that achieves the *minimal risk* among all possible functions:

$$f^* \in \operatorname*{arg\,min}_f R(f),$$

where the minimum is taken over all functions from X to A.

- The risk of a Bayes prediction function is called the Bayes risk.
- A Bayes prediction function is often called the "target function", since it's the best prediction function we can possibly produce.

Example: Least Squares Regression

- Spaces: A = Y = R
- Square loss:

$$\ell(a,y) = (a-y)^2$$

Risk:

$$\begin{array}{rcl} R(f) & = & \mathbb{E}\big[(f(x)-y)^2\big] \\ (\mathsf{homework} \implies) & = & \mathbb{E}\big[(f(x)-\mathbb{E}[y|x])^2\big] + \mathbb{E}\big[(y-\mathbb{E}[y|x])^2\big] \end{array}$$

• So Bayes prediction function is

$$f^*(x) = \mathbb{E}[y|x]$$

Example 2: Multiclass Classification

- Spaces: $A = y = \{1, ..., k\}$
- 0-1 loss:

$$\ell(a,y) = 1 (a \neq y) := \begin{cases} 1 & \text{if } a \neq y \\ 0 & \text{otherwise.} \end{cases}$$

Risk:

$$R(f) = \mathbb{E}[1(f(x) \neq y)] = 0 \cdot \mathbb{P}(f(x) = y) + 1 \cdot \mathbb{P}(f(x) \neq y)$$
$$= \mathbb{P}(f(x) \neq y),$$

which is just the misclassification error rate.

• Bayes prediction function is just the assignment to the most likely class:

$$f^*(x) \in \underset{1 \leqslant c \leqslant k}{\operatorname{arg\,max}} \mathbb{P}(y = c \mid x)$$

But we can't compute the risk!

- Can't compute $R(f) = \mathbb{E}\ell(f(x), y)$ because we **don't know** $P_{X \times Y}$.
- One thing we can do in ML/statistics/data science is

assume we have sample data.

Let $\mathfrak{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$ be drawn i.i.d. from $\mathfrak{P}_{\mathfrak{X} \times \mathfrak{Y}}$.

• Let's draw some inspiration from the Strong Law of Large Numbers: If $z, z_1, ..., z_n$ are i.i.d. with expected value $\mathbb{E}z$, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n z_i=\mathbb{E}z,$$

with probability 1.

The Empirical Risk

Let $\mathcal{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$ be drawn i.i.d. from $\mathcal{P}_{\mathfrak{X} \times \mathfrak{Y}}$.

Definition

The **empirical risk** of $f: \mathcal{X} \to \mathcal{A}$ with respect to \mathcal{D}_n is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

• By the Strong Law of Large Numbers.

$$\lim_{n\to\infty}\hat{R}_n(f)=R(f),$$

almost surely.

• But we want to find the f that **minimizes** R(f) - will minimizing $\hat{R}_n(f)$ be good enough?

We want risk minimizer, is empirical risk minimizer close enough?

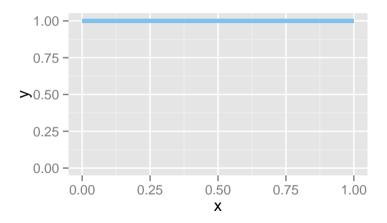
Definition

A function \hat{f} is an empirical risk minimizer if

$$\hat{f} \in \operatorname*{arg\,min}_{f} \hat{R}_{n}(f),$$

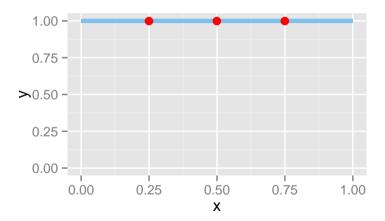
where the minimum is taken over all functions.

 $P_{\mathfrak{X}} = \mathsf{Uniform}[0,1], \ Y \equiv 1 \ \text{(i.e. } Y \text{ is always 1)}.$



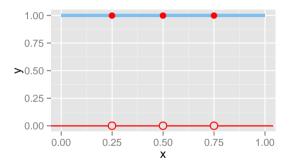
 $\mathcal{P}_{\chi \times y}$.

 $P_{\mathfrak{X}} = \mathsf{Uniform}[0,1], \ Y \equiv 1 \ \text{(i.e. } Y \text{ is always 1)}.$



A sample of size 3 from $\mathcal{P}_{\chi \times y}$.

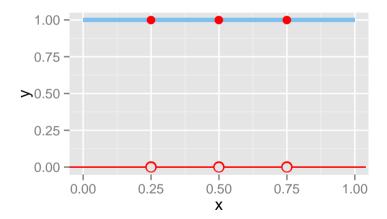
$$P_{\chi} = \text{Uniform}[0,1], Y \equiv 1 \text{ (i.e. } Y \text{ is always 1)}.$$



A proposed prediction function:

$$\hat{f}(x) = 1(x \in \{0.25, 0.5, 0.75\}) = \begin{cases} 1 & \text{if } x \in \{0.25, .5, .75\} \\ 0 & \text{otherwise} \end{cases}$$

 $P_{\chi} = \text{Uniform}[0,1], Y \equiv 1 \text{ (i.e. } Y \text{ is always 1)}.$



Under square loss or 0/1 loss: \hat{f} has Empirical Risk = 0 and Risk = 1.

- ERM led to a function f that just memorized the data.
- How to spread information or "generalize" from training inputs to new inputs?
- Need to smooth things out somehow...
 - A lot of modeling is about spreading and extrapolating information from one part of the input space $\mathcal X$ into unobserved parts of the space.
- One approach: "Constrained ERM"
 - Instead of minimizing empirical risk over all prediction functions,
 - constrain to a particular subset, called a hypothesis space.

Hypothesis Spaces

Definition

A hypothesis space \mathcal{F} is a set of functions mapping $\mathcal{X} \to \mathcal{A}$.

• It is the collection of prediction functions we are choosing from.

Want Hypothesis Space that...

- Includes only those functions that have desired "regularity"
 - e.g. smoothness, simplicity
- Easy to work with

Example hypothesis spaces?

Constrained Empirical Risk Minimization

- ullet Hypothesis space \mathcal{F} , a set of [prediction] functions mapping $\mathcal{X} \to \mathcal{A}$
- ullet Empirical risk minimizer (ERM) in ${\mathfrak F}$ is

$$\hat{f}_n \in \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

ullet Risk minimizer in $\mathcal F$ is $f_{\mathcal F}^*\in \mathcal F$, where

$$f_{\mathfrak{F}}^* \in \arg\min_{f \in \mathfrak{F}} \mathbb{E}\ell(f(x), y).$$