Stochastic Gradient Descent

David S. Rosenberg

New York University

January 30, 2018

Review: Statistical Learning Theory Framework

Our Setup from Statistical Learning Theory

The Spaces

• \mathfrak{X} : input space

• \mathcal{Y} : outcome space

• \mathcal{A} : action space

Prediction Function (or "decision function")

A prediction function (or decision function) gets input $x \in \mathfrak{X}$ and produces an action $a \in \mathcal{A}$:

 $\begin{array}{rrrr} f: & \mathfrak{X} & \to & \mathcal{A} \\ & x & \mapsto & f(x) \end{array}$

Loss Function

A loss function evaluates an action in the context of the outcome y.

$$\ell: \mathcal{A} \times \mathcal{Y} \to \mathsf{R} \ (a, y) \mapsto \ell(a, y)$$

Risk and the Bayes Prediction Function

Definition

The **risk** of a prediction function $f : \mathcal{X} \to \mathcal{A}$ is

 $R(f) = \mathbb{E}\ell(f(x), y).$

In words, it's the expected loss of f on a new exampe (x, y) drawn randomly from $P_{\mathcal{X} \times \mathcal{Y}}$.

Definition

A Bayes prediction function $f^* : \mathcal{X} \to \mathcal{A}$ is a function that achieves the *minimal risk* among all possible functions:

$$f^* \in \operatorname*{arg\,min}_{f} R(f),$$

where the minimum is taken over all functions from ${\mathfrak X}$ to ${\mathcal A}.$

• The risk of a Bayes prediction function is called the Bayes risk.

The Empirical Risk

Let $\mathcal{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$ be drawn i.i.d. from $\mathcal{P}_{\mathfrak{X} \times \mathfrak{Y}}$.

Definition

The **empirical risk** of $f : \mathcal{X} \to \mathcal{A}$ with respect to \mathcal{D}_n is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

• But we saw that the unconstrained empirical risk minimizer overfits.

• i.e. if we minize $\hat{R}_n(f)$ over all functions, we overfit.

Constrained Empirical Risk Minimization

Definition

A hypothesis space \mathcal{F} is a set of functions mapping $\mathfrak{X} \to \mathcal{A}$.

- It is the collection of prediction functions we are choosing from.
- Empirical risk minimizer (ERM) in \mathcal{F} is

$$\hat{f}_n \in \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

- From now on "ERM" always means "constrained ERM".
- So we should always specify the hypothesis space when we're doing ERM.

Example: Linear Least Squares Regression

Setup

- Input space $\mathcal{X} = \mathbf{R}^d$
- Output space $\mathcal{Y} = \mathbf{R}$
- Action space $\mathcal{Y} = \mathbf{R}$
- Loss: $\ell(\hat{y}, y) = (y \hat{y})^2$
- Hypothesis space: $\mathcal{F} = \{ f : \mathbb{R}^d \to \mathbb{R} \mid f(x) = w^T x, w \in \mathbb{R}^d \}$

• Given data set $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\},\$

• Let's find the ERM $\hat{f} \in \mathcal{F}$.

Example: Linear Least Squares Regression

Objective Function: Empirical Risk

The function we want to minimize is the empirical risk:

$$\hat{R}_{n}(w) = \frac{1}{n} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2},$$

where $w \in \mathbf{R}^d$ parameterizes the hypothesis space \mathcal{F} .

• Now let's think more generally...

Gradient Descent for Empirical Risk - Scaling Issues

Gradient Descent for Empirical Risk and Averages

• Suppose we have a hypothesis space of functions $\mathcal{F} = \{f_w : \mathcal{X} \to \mathcal{A} \mid w \in \mathbf{R}^d\}$

- Parameterized by $w \in \mathbf{R}^d$.
- ERM is to find *w* minimizing

$$\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \ell(f_w(x_i), y_i)$$

- Suppose $\ell(f_w(x_i), y_i)$ is differentiable as a function of w.
- Then we can do gradient descent on $\hat{R}_n(w)$...

Gradient Descent: How does it scale with n?

• At every iteration, we compute the gradient at current w:

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- We have to touch all n training points to take a single step. [O(n)]
- Will this scale to "big data"?
- Can we make progress without looking at all the data?

Stochastic Gradient Descent

"Noisy" Gradient Descent

- We know gradient descent works.
- But the gradient may be slow to compute.
- What if we just use an estimate of the gradient?
- Turns out that can work fine.
- Intuition:
 - Gradient descent is an interative procedure anyway.
 - At every step, we have a chance to recover from previous missteps.

Minibatch Gradient

• The full gradient is

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- It's an average over the full batch of data $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$.
- Let's take a random subsample of size *N* (called a **minibatch**):

$$(x_{m_1}, y_{m_1}), \ldots, (x_{m_N}, y_{m_N})$$

• The minibatch gradient is

$$\nabla \hat{R}_{N}(w) = \frac{1}{N} \sum_{i=1}^{N} \nabla_{w} \ell(f_{w}(x_{m_{i}}), y_{m_{i}})$$

• What can we say about the minibatch gradient? It's random. What's its expectation?

Minibatch Gradient

• What's the expected value of the minibatch gradient?

$$\mathbb{E}\left[\nabla \hat{R}_{N}(w)\right] = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[\nabla_{w}\ell(f_{w}(x_{m_{i}}), y_{m_{i}})\right]$$
$$= \mathbb{E}\left[\nabla_{w}\ell(f_{w}(x_{m_{1}}), y_{m_{1}})\right]$$
$$= \sum_{i=1}^{n} \mathbb{P}(m_{1} = i) \nabla_{w}\ell(f_{w}(x_{i}), y_{i})$$
$$= \frac{1}{n} \sum_{i=1}^{n} \nabla_{w}\ell(f_{w}(x_{i}), y_{i})$$
$$= \nabla \hat{R}_{n}(w)$$

• *Technical note:* We only assumed that each point in the minibatch is equally likely to be any of the *n* points in the batch – no independence needed. So still true if we're sampling without replacement. Still true if we sample one point randomly and reuse it *N* times.

• Minibatch gradient is an unbiased estimator for the [full] batch gradient:

$$\mathbb{E}\left[\nabla \hat{R}_{N}(w)\right] = \nabla \hat{R}_{n}(w)$$

• The bigger the minibatch, the better the estimate.

Minibatch Gradient - In Practice

- Tradeoffs of minibatch size:
 - Bigger $N \implies$ Better estimate of gradient, but slower (more data to touch)
 - Smaller $N \implies$ Worse estimate of gradient, but can be quite fast
- Even N = 1 works, it's traditionally called stochastic gradient descent (SGD).
- These days, people use SGD to refer to minibatch SGD as well.
- If someone says "SGD", you ask "What's your [mini]batch size?", to avoid ambiguity.

Terminology Review (Rough)

- Gradient descent or "full-batch" gradient descent
 - Use full data set of size *n* to determine step direction
- Minibatch gradient descent
 - Use a random subset of size N to determine step direction
 - Yoshua Bengio says¹:
 - N is typically between 1 and few hundred
 - N = 32 is a good default value
 - With $N \ge 10$ we get computational speedup (per datum touched)
- Stochastic gradient descent
 - Minibatch with m = 1.
 - Use a single randomly chosen point to determine step direction.

But these days terminology isn't used so consistently, so always clarify the [mini]batch size.

David S. Rosenberg (New York University)

¹See Yoshua Bengio's "Practical recommendations for gradient-based training of deep architectures" http://arxiv.org/abs/1206.5533.

Minibatch Gradient Descent (minibatch size N)

- initialize w = 0
- repeat

• randomly choose
$$N$$
 points $\{(x_i, y_i)\}_{i=1}^N \subset \mathcal{D}_n$

•
$$w \leftarrow w - \eta \left[\frac{1}{N} \sum_{i=1}^{N} \nabla_{w} \ell(f_{w}(x_{i}), y_{i}) \right]$$

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent

- initialize w = 0
- repeat
 - randomly choose training point $(x_i, y_i) \in \mathcal{D}_n$

•
$$w \leftarrow w - \eta$$

Grad(Loss on i'th example)

- For SGD, fixed step size can work well in practice.
- *Typical approach:* Fixed step size reduced by constant factor whenever validation performance stops improving.
- But no theorem for this giving performance guarantees (to my knowledge).

Robbins-Monro conditions

- For convergence guarantee, use decreasing step sizes (dampens noise in step direction).
- Let η_t be the step size at the *t*'th step.

Robbins-Monro Conditions

Many classical convergence results depend on the following two conditions:

$$\sum_{t=1}^{\infty} \eta_t^2 < \infty \qquad \sum_{t=1}^{\infty} \eta_t = \infty$$

- As fast as $\eta_t = O\left(\frac{1}{t}\right)$ would satisfy this... but should be faster than $O\left(\frac{1}{\sqrt{t}}\right)$.
- A useful reference for practical techniques: Leon Bottou's "Tricks": http://research.microsoft.com/pubs/192769/tricks-2012.pdf

Practical Comparison of GD vs SGD

- For huge data, GD isn't practical.
- In a theoretical sense, GD is much faster than SGD... (i.e. better convergence rates)
 - but most of that benefit happens once you're already pretty close to the solution
 - much faster to add an extra decimal place of accuracy on the minimum

Does SGD Catch Up to GD?

• Ridge regression objective function value for GD and SGD with various stepsizes

- Why doesn't SGD catch up to batch GD? It does, just takes a very long time.
- Is it worth the wait? As we discuss in next module, probably not...