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Review: Statistical Learning Theory Framework
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Our Setup from Statistical Learning Theory

The Spaces

X: input space Y: outcome space A: action space

Prediction Function (or “decision function”)

A prediction function (or decision function) gets input x ∈X and produces an action a ∈A :

f : X → A

x 7→ f (x)

Loss Function
A loss function evaluates an action in the context of the outcome y .

` : A×Y → R
(a,y) 7→ `(a,y)

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 January 30, 2018 3 / 25



Risk and the Bayes Prediction Function

Definition
The risk of a prediction function f : X→A is

R(f ) = E`(f (x),y).

In words, it’s the expected loss of f on a new exampe (x ,y) drawn randomly from PX×Y.

Definition
A Bayes prediction function f ∗ : X→A is a function that achieves the minimal risk among
all possible functions:

f ∗ ∈ argmin
f

R(f ),

where the minimum is taken over all functions from X to A.

The risk of a Bayes prediction function is called the Bayes risk.
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The Empirical Risk

Let Dn = ((x1,y1), . . . ,(xn,yn)) be drawn i.i.d. from PX×Y.

Definition
The empirical risk of f : X→A with respect to Dn is

R̂n(f ) =
1
n

n∑
i=1

`(f (xi ),yi ).

But we saw that the unconstrained empirical risk minimizer overfits.

i.e. if we minize R̂n(f ) over all functions, we overfit.
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Constrained Empirical Risk Minimization

Definition
A hypothesis space F is a set of functions mapping X→A.

It is the collection of prediction functions we are choosing from.

Empirical risk minimizer (ERM) in F is

f̂n ∈ argmin
f∈F

1
n

n∑
i=1

`(f (xi ),yi ).

From now on “ERM” always means “constrained ERM”.
So we should always specify the hypothesis space when we’re doing ERM.
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Example: Linear Least Squares Regression

Setup

Input space X= Rd

Output space Y= R
Action space Y= R

Loss: `(ŷ ,y) = (y − ŷ)2

Hypothesis space: F =
{
f : Rd → R | f (x) = wT x , w ∈ Rd

}
’

Given data set Dn = {(x1,y1), . . . ,(xn,yn)},
Let’s find the ERM f̂ ∈ F.

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 January 30, 2018 7 / 25



Example: Linear Least Squares Regression

Objective Function: Empirical Risk
The function we want to minimize is the empirical risk:

R̂n(w) =
1
n

n∑
i=1

(
wT xi − yi

)2
,

where w ∈ Rd parameterizes the hypothesis space F.

Now let’s think more generally...
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Gradient Descent for Empirical Risk - Scaling Issues
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Gradient Descent for Empirical Risk and Averages

Suppose we have a hypothesis space of functions F =
{
fw : X→A | w ∈ Rd

}
Parameterized by w ∈ Rd .

ERM is to find w minimizing

R̂n(w) =
1
n

n∑
i=1

`(fw (xi ),yi )

Suppose `(fw (xi ),yi ) is differentiable as a function of w .

Then we can do gradient descent on R̂n(w)...
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Gradient Descent: How does it scale with n?

At every iteration, we compute the gradient at current w :

∇R̂n(w) =
1
n

n∑
i=1

∇w `(fw (xi ),yi )

We have to touch all n training points to take a single step. [O(n)]

Will this scale to “big data”?

Can we make progress without looking at all the data?
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Stochastic Gradient Descent
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“Noisy” Gradient Descent

We know gradient descent works.
But the gradient may be slow to compute.

What if we just use an estimate of the gradient?

Turns out that can work fine.

Intuition:
Gradient descent is an interative procedure anyway.

At every step, we have a chance to recover from previous missteps.
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Minibatch Gradient

The full gradient is

∇R̂n(w) =
1
n

n∑
i=1

∇w `(fw (xi ),yi )

It’s an average over the full batch of data Dn = {(x1,y1), . . . ,(xn,yn)}.

Let’s take a random subsample of size N (called a minibatch):

(xm1 ,ym1), . . . ,(xmN
,ymN

)

The minibatch gradient is

∇R̂N(w) =
1
N

N∑
i=1

∇w `(fw (xmi ),ymi )

What can we say about the minibatch gradient? It’s random. What’s its expectation?
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Minibatch Gradient

What’s the expected value of the minibatch gradient?

E
[
∇R̂N(w)

]
=

1
N

N∑
i=1

E [∇w `(fw (xmi ),ymi )]

= E [∇w `(fw (xm1),ym1)]

=

n∑
i=1

P(m1 = i)∇w `(fw (xi ),yi )

=
1
n

n∑
i=1

∇w `(fw (xi ),yi )

= ∇R̂n(w)

Technical note: We only assumed that each point in the minibatch is equally likely to be
any of the n points in the batch – no independence needed. So still true if we’re sampling
without replacement. Still true if we sample one point randomly and reuse it N times.
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Minibatch Gradient Properties

Minibatch gradient is an unbiased estimator for the [full] batch gradient:

E
[
∇R̂N(w)

]
=∇R̂n(w)

The bigger the minibatch, the better the estimate.
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Minibatch Gradient – In Practice

Tradeoffs of minibatch size:
Bigger N =⇒ Better estimate of gradient, but slower (more data to touch)
Smaller N =⇒Worse estimate of gradient, but can be quite fast

Even N = 1 works, it’s traditionally called stochastic gradient descent (SGD).

These days, people use SGD to refer to minibatch SGD as well.

If someone says “SGD”, you ask – “What’s your [mini]batch size?”, to avoid ambiguity.
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Terminology Review (Rough)

Gradient descent or “full-batch” gradient descent
Use full data set of size n to determine step direction

Minibatch gradient descent
Use a random subset of size N to determine step direction
Yoshua Bengio says1:

N is typically between 1 and few hundred
N = 32 is a good default value
With N > 10 we get computational speedup (per datum touched)

Stochastic gradient descent
Minibatch with m = 1.
Use a single randomly chosen point to determine step direction.

But these days terminology isn’t used so consistently, so always clarify the [mini]batch size.

1See Yoshua Bengio’s “Practical recommendations for gradient-based training of deep architectures”
http://arxiv.org/abs/1206.5533.
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Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size N)

initialize w = 0
repeat

randomly choose N points {(xi ,yi )}
N
i=1 ⊂Dn

w ← w −η
[

1
N

∑N
i=1∇w `(fw (xi ),yi )

]
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Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent
initialize w = 0
repeat

randomly choose training point (xi ,yi ) ∈Dn

w ← w −η ∇w `(fw (xi ),yi )︸ ︷︷ ︸
Grad(Loss on i’th example)
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Step Size: In practice

For SGD, fixed step size can work well in practice.

Typical approach: Fixed step size reduced by constant factor whenever validation
performance stops improving.

But no theorem for this giving performance guarantees (to my knowledge).
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Robbins-Monro conditions

For convergence guarantee, use decreasing step sizes (dampens noise in step direction).

Let ηt be the step size at the t’th step.

Robbins-Monro Conditions
Many classical convergence results depend on the following two conditions:

∞∑
t=1

η2
t <∞ ∞∑

t=1

ηt =∞
As fast as ηt = O

(1
t

)
would satisfy this... but should be faster than O

(
1√
t

)
.

A useful reference for practical techniques: Leon Bottou’s “Tricks”:
http://research.microsoft.com/pubs/192769/tricks-2012.pdf
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Practical Comparison of GD vs SGD
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Practical Comparison of GD vs SGD

For huge data, GD isn’t practical.

In a theoretical sense, GD is much faster than SGD... (i.e. better convergence rates)
but most of that benefit happens once you’re already pretty close to the solution

much faster to add an extra decimal place of accuracy on the minimum
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Does SGD Catch Up to GD?

Ridge regression objective function value for GD and SGD with various stepsizes

Why doesn’t SGD catch up to batch GD? It does, just takes a very long time.
Is it worth the wait? As we discuss in next module, probably not...
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