ℓ_{1} and ℓ_{2} Regularization

David S. Rosenberg
New York University
January 30, 2018

Tikhonov and Ivanov Regularization

Hypothesis Spaces

- We've spoken vaguely about "bigger" and "smaller" hypothesis spaces
- In practice, convenient to work with a nested sequence of spaces:

$$
\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}_{n} \cdots \subset \mathcal{F}
$$

Polynomial Functions

- $\mathcal{F}=\{$ all polynomial functions $\}$
- $\mathcal{F}_{d}=\{$ all polynomials of degree $\leqslant d\}$

Complexity Measures for Decision Functions

- Number of variables / features
- Depth of a decision tree
- Degree of polynomial
- How about for linear decision functions, i.e. $x \mapsto w^{T} x=w_{1} x_{1}+\cdots+w_{d} x_{d}$?
- ℓ_{0} complexity: number of non-zero coefficients $\sum_{i=1}^{d} 1\left(w_{i} \neq 0\right)$.
- ℓ_{1} "lasso" complexity: $\sum_{i=1}^{d}\left|w_{i}\right|$, for coefficients w_{1}, \ldots, w_{d}
- ℓ_{2} "ridge" complexity: $\sum_{i=1}^{d} w_{i}^{2}$ for coefficients w_{1}, \ldots, w_{d}

Nested Hypothesis Spaces from Complexity Measure

- Hypothesis space: \mathcal{F}
- Complexity measure $\Omega: \mathcal{F} \rightarrow[0, \infty)$
- Consider all functions in \mathcal{F} with complexity at most r :

$$
\mathcal{F}_{r}=\{f \in \mathcal{F} \mid \Omega(f) \leqslant r\}
$$

- Increasing complexities: $r=0,1.2,2.6,5.4, \ldots$ gives nested spaces:

$$
\mathcal{F}_{0} \subset \mathcal{F}_{1.2} \subset \mathcal{F}_{2.6} \subset \mathcal{F}_{5.4} \subset \cdots \subset \mathcal{F}
$$

Constrained Empirical Risk Minimization

Constrained ERM (Ivanov regularization)
For complexity measure $\Omega: \mathcal{F} \rightarrow[0, \infty)$ and fixed $r \geqslant 0$,

$$
\begin{aligned}
& \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right) \\
& \text { s.t. } \Omega(f) \leqslant r
\end{aligned}
$$

- Choose r using validation data or cross-validation.
- Each r corresponds to a different hypothesis spaces. Could also write:

$$
\min _{f \in \mathcal{F}_{r}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)
$$

Penalized Empirical Risk Minimization

Penalized ERM (Tikhonov regularization)

For complexity measure $\Omega: \mathcal{F} \rightarrow[0, \infty)$ and fixed $\lambda \geqslant 0$,

$$
\min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)+\lambda \Omega(f)
$$

- Choose λ using validation data or cross-validation.
- (Ridge regression in homework is of this form.)

Ivanov vs Tikhonov Regularization

- Let $L: \mathcal{F} \rightarrow \mathbf{R}$ be any performance measure of f
- e.g. $L(f)$ could be the empirical risk of f
- For many L and Ω, Ivanov and Tikhonov are "equivalent".
- What does this mean?
- Any solution f^{*} you could get from Ivanov, can also get from Tikhonov.
- Any solution f^{*} you could get from Tikhonov, can also get from Ivanov.
- In practice, both approaches are effective.
- Tikhonov convenient because it's unconstrained minimization.

Can get conditions for equivalence from Lagrangian duality theory - details in homework.

Ivanov vs Tikhonov Regularization (Details)

Ivanov and Tikhonov regularization are equivalent if:
(1) For any choice of $r>0$, any Ivanov solution

$$
f_{r}^{*} \in \underset{f \in \mathcal{F}}{\arg \min } L(f) \text { s.t. } \Omega(f) \leqslant r
$$

is also a Tikhonov solution for some $\lambda>0$. That is, $\exists \lambda>0$ such that

$$
f_{r}^{*} \in \underset{f \in \mathcal{F}}{\arg \min } L(f)+\lambda \Omega(f) .
$$

(2) Conversely, for any choice of $\lambda>0$, any Tikhonov solution:

$$
f_{\lambda}^{*} \in \underset{f \in \mathcal{F}}{\arg \min } L(f)+\lambda \Omega(f)
$$

is also an Ivanov solution for some $r>0$. That is, $\exists r>0$ such that

$$
f_{\lambda}^{*} \in \underset{f \in \mathcal{F}}{\arg \min } L(f) \text { s.t. } \Omega(f) \leqslant r
$$

ℓ_{1} and ℓ_{2} Regularization

Linear Least Squares Regression

- Consider linear models

$$
\mathcal{F}=\left\{f: \mathbf{R}^{d} \rightarrow \mathbf{R} \mid f(x)=w^{\top} x \text { for } w \in \mathbf{R}^{d}\right\}
$$

- Loss: $\ell(\hat{y}, y)=(y-\hat{y})^{2}$
- Training data $\mathcal{D}_{n}=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)$
- Linear least squares regression is ERM for ℓ over \mathcal{F} :

$$
\hat{w}=\underset{w \in \mathbf{R}^{d}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left\{w^{T} x_{i}-y_{i}\right\}^{2}
$$

- Can overfit when d is large compared to n.
- e.g.: $d \gg n$ very common in Natural Language Processing problems (e.g. a 1 M features for 10 K documents).

Ridge Regression: Workhorse of Modern Data Science

Ridge Regression (Tikhonov Form)

The ridge regression solution for regularization parameter $\lambda \geqslant 0$ is

$$
\hat{w}=\underset{w \in \mathbf{R}^{d}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left\{w^{T} x_{i}-y_{i}\right\}^{2}+\lambda\|w\|_{2}^{2},
$$

where $\|w\|_{2}^{2}=w_{1}^{2}+\cdots+w_{d}^{2}$ is the square of the ℓ_{2}-norm.
Ridge Regression (Ivanov Form)
The ridge regression solution for complexity parameter $r \geqslant 0$ is

$$
\hat{w}=\underset{\|w\|_{2}^{2} \leqslant r^{2}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left\{w^{T} x_{i}-y_{i}\right\}^{2} .
$$

How does ℓ_{2} regularization induce "regularity"?

- For $\hat{f}(x)=\hat{w}^{T} x, \hat{f}$ is Lipschitz continuous with Lipschitz constant $L=\|\hat{w}\|_{2}$.
- That is, when moving from x to $x+h, \hat{f}$ changes no more than $L\|h\|$.
- So ℓ_{2} regularization controls the maximum rate of change of \hat{f}.
- Proof:

$$
\begin{aligned}
|\hat{f}(x+h)-\hat{f}(x)| & =\left|\hat{w}^{T}(x+h)-\hat{w}^{T} x\right|=\left|\hat{w}^{T} h\right| \\
& \leqslant\|\hat{w}\|_{2}\|h\|_{2}(\text { Cauchy-Schwarz inequality })
\end{aligned}
$$

- Since $\|\hat{w}\|_{1} \geqslant\|\hat{w}\|_{2}$, an ℓ_{1} constraint will also give a Lipschitz bound.

Ridge Regression: Regularization Path

Ridge Regression

$$
\begin{aligned}
\hat{w}_{r} & =\underset{\|w\|_{2}^{2} \leq r^{2}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}-y_{i}\right)^{2} \\
\hat{w} & =\hat{w}_{\infty}=\text { Unconstrained ERM }
\end{aligned}
$$

- For $r=0,\left\|\hat{w}_{r}\right\|_{2} /\|\hat{w}\|_{2}=0$.
- For $r=\infty,\left\|\hat{w}_{r}\right\|_{2} /\|\hat{w}\|_{2}=1$

Lasso Regression: Workhorse (2) of Modern Data Science

Lasso Regression (Tikhonov Form)

The lasso regression solution for regularization parameter $\lambda \geqslant 0$ is

$$
\hat{w}=\underset{w \in \mathbf{R}^{d}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left\{w^{T} x_{i}-y_{i}\right\}^{2}+\lambda\|w\|_{1},
$$

where $\|w\|_{1}=\left|w_{1}\right|+\cdots+\left|w_{d}\right|$ is the ℓ_{1}-norm.

Lasso Regression (Ivanov Form)
The lasso regression solution for complexity parameter $r \geqslant 0$ is

$$
\hat{w}=\underset{\|w\|_{1} \leqslant r}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left\{w^{\top} x_{i}-y_{i}\right\}^{2} .
$$

Lasso Regression: Regularization Path

$$
\begin{aligned}
\hat{w}_{r} & =\underset{\|w\|_{1} \leq r}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}-y_{i}\right)^{2} \\
\hat{w} & =\hat{w}_{\infty}=\text { Unconstrained ERM }
\end{aligned}
$$

- For $r=0,\left\|\hat{w}_{r}\right\|_{1} /\|\hat{w}\|_{1}=0$.
- For $r=\infty,\left\|\hat{w}_{r}\right\|_{1} /\|\hat{w}\|_{1}=1$

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.

Ridge vs. Lasso: Regularization Paths

Ridge Regression

Lasso

Lasso Gives Feature Sparsity: So What?

Coefficient are $0 \Longrightarrow$ don't need those features. What's the gain?

- Time/expense to compute/buy features
- Memory to store features (e.g. real-time deployment)
- Identifies the important features
- Better prediction? sometimes
- As a feature-selection step for training a slower non-linear model

Ivanov and Tikhonov Equivalent?

- For ridge regression and lasso regression (and much more)
- the Ivanov and Tikhonov formulations are equivalent
- [Optional homework problem, upcoming.]
- We will use whichever form is most convenient.

Why does Lasso regression give sparse solutions?

Parameter Space

- Illustrate affine prediction functions in parameter space.

The ℓ_{1} and ℓ_{2} Norm Constraints

- For visualization, restrict to 2-dimensional input space
- $\mathcal{F}=\left\{f(x)=w_{1} x_{1}+w_{2} x_{2}\right\}$ (linear hypothesis space)
- Represent \mathcal{F} by $\left\{\left(w_{1}, w_{2}\right) \in \mathbf{R}^{2}\right\}$.
- ℓ_{2} contour:

$$
w_{1}^{2}+w_{2}^{2}=r
$$

- ℓ_{1} contour: $\left|w_{1}\right|+\left|w_{2}\right|=r$

Where are the "sparse" solutions?

The Famous Picture for ℓ_{1} Regularization

- $f_{r}^{*}=\arg \min _{w \in \mathbf{R}^{2}} \frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}-y_{i}\right)^{2}$ subject to $\left|w_{1}\right|+\left|w_{2}\right| \leqslant r$

- Blue region: Area satisfying complexity constraint: $\left|w_{1}\right|+\left|w_{2}\right| \leqslant r$
- Red lines: contours of $\hat{R}_{n}(w)=\sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}$.

The Empirical Risk for Square Loss

- Denote the empirical risk of $f(x)=w^{T} x$ by

$$
\hat{R}_{n}(w)=\frac{1}{n}\|X w-y\|^{2}
$$

where X is the design matrix.

- \hat{R}_{n} is minimized by $\hat{w}=\left(X^{T} X\right)^{-1} X^{T} y$, the OLS solution.
- What does \hat{R}_{n} look like around \hat{w} ?

The Empirical Risk for Square Loss

- By "completing the square", we can show for any $w \in \mathbf{R}^{d}$:

$$
\hat{R}_{n}(w)=\frac{1}{n}(w-\hat{w})^{T} X^{T} X(w-\hat{w})+\hat{R}_{n}(\hat{w})
$$

- Set of w with $\hat{R}_{n}(w)$ exceeding $\hat{R}_{n}(\hat{w})$ by $c>0$ is

$$
\left\{w \mid \hat{R}_{n}(w)=c+\hat{R}_{n}(\hat{w})\right\}=\left\{w \mid(w-\hat{w})^{T} X^{T} X(w-\hat{w})=n c\right\},
$$

which is an ellipsoid centered at \hat{w}.

- We'll derive this in homework.

The Famous Picture for ℓ_{2} Regularization

- $f_{r}^{*}=\arg \min _{w \in \mathbf{R}^{2}} \sum_{i=1}^{n}\left(w^{T} x_{i}-y_{i}\right)^{2}$ subject to $w_{1}^{2}+w_{2}^{2} \leqslant r$

- Blue region: Area satisfying complexity constraint: $w_{1}^{2}+w_{2}^{2} \leqslant r$
- Red lines: contours of $\hat{R}_{n}(w)=\sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}$.

Why are Lasso Solutions Often Sparse?

- Suppose design matrix X is orthogonal, so $X^{T} X=I$, and contours are circles.
- Then OLS solution in green or red regions implies ℓ_{1} constrained solution will be at corner
- Generalize to $\ell_{q}:\left(\|w\|_{q}\right)^{q}=\left|w_{1}\right|^{q}+\left|w_{2}\right|^{q}$.
- Note: $\|w\|_{q}$ is a norm if $q \geqslant 1$, but not for $q \in(0,1)$
- $\mathcal{F}=\left\{f(x)=w_{1} x_{1}+w_{2} x_{2}\right\}$.
- Contours of $\|w\|_{q}^{q}=\left|w_{1}\right|^{q}+\left|w_{2}\right|^{q}$:

$$
q=4
$$

$$
q=2
$$

$q=1$
$q=0.5$
$q=0.1$

ℓ_{q} Even Sparser

(b) ℓ_{q}-ball with $q<1$.

- Suppose design matrix X is orthogonal, so $X^{\top} X=I$, and contours are circles.
- Then OLS solution in green or red regions implies ℓ_{q} constrained solution will be at corner ℓ_{q}-ball constraint is not convex, so more difficult to optimize.

Fig from Mairal et al.'s Sparse Modeling for Image and Vision Processing Fig 1.9

The Quora Picture

- From Quora: "Why is L1 regularization supposed to lead to sparsity than L2? [sic]" (google it)

- Does this picture have any interpretation that makes sense? (Aren't those lines supposed to be ellipses?)
- Yes... we can revisit.

Finding the Lasso Solution: Lasso as Quadratic Program

How to find the Lasso solution?

- How to solve the Lasso?

$$
\min _{w \in \mathbf{R}^{d}} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}+\lambda\|w\|_{1}
$$

- $\|w\|_{1}=\left|w_{1}\right|+\left|w_{2}\right|$ is not differentiable!

Splitting a Number into Positive and Negative Parts

- Consider any number $a \in \mathbf{R}$.
- Let the positive part of a be

$$
a^{+}=a 1(a \geqslant 0) .
$$

- Let the negative part of a be

$$
a^{-}=-a 1(a \leqslant 0) .
$$

- Do you see why $a^{+} \geqslant 0$ and $a^{-} \geqslant 0$?
- How do you write a in terms of a^{+}and a^{-}?
- How do you write $|a|$ in terms of a^{+}and a^{-}?

How to find the Lasso solution?

- The Lasso problem

$$
\min _{w \in \mathbf{R}^{d}} \sum_{i=1}^{n}\left(w^{T} x_{i}-y_{i}\right)^{2}+\lambda\|w\|_{1}
$$

- Replace each w_{i} by $w_{i}^{+}-w_{i}^{-}$.
- Write $w^{+}=\left(w_{1}^{+}, \ldots, w_{d}^{+}\right)$and $w^{-}=\left(w_{1}^{-}, \ldots, w_{d}^{-}\right)$.

The Lasso as a Quadratic Program

We will show: substituting $w=w^{+}-w^{-}$and $|w|=w^{+}+w^{-}$gives an equivalent problem:

$$
\begin{aligned}
\min _{w^{+}, w^{-}} & \sum_{i=1}^{n}\left(\left(w^{+}-w^{-}\right)^{T} x_{i}-y_{i}\right)^{2}+\lambda 1^{T}\left(w^{+}+w^{-}\right) \\
\text {subject to } & w_{i}^{+} \geqslant 0 \text { for all } i \quad w_{i}^{-} \geqslant 0 \text { for all } i,
\end{aligned}
$$

- Objective is differentiable (in fact, convex and quadratic)
- $2 d$ variables vs d variables and $2 d$ constraints vs no constraints
- A "quadratic program": a convex quadratic objective with linear constraints.
- Could plug this into a generic QP solver.

Possible point of confusion

Equivalent to lasso problem:

$$
\begin{aligned}
\min _{w^{+}, w^{-}} & \sum_{i=1}^{n}\left(\left(w^{+}-w^{-}\right)^{T} x_{i}-y_{i}\right)^{2}+\lambda 1^{T}\left(w^{+}+w^{-}\right) \\
\text {subject to } & w_{i}^{+} \geqslant 0 \text { for all } i \quad w_{i}^{-} \geqslant 0 \text { for all } i,
\end{aligned}
$$

- When we plug this optimization problem into a QP solver,
- it just sees $2 d$ variables and $2 d$ constraints.
- Doesn't know we want w_{i}^{+}and w_{i}^{-}to be positive and negative parts of w_{i}.
- Turns out - they will come out that way as a result of the optimization!
- But to eliminate confusion, let's start by calling them a_{i} and b_{i} and prove our claim...

The Lasso as a Quadratic Program

Lasso problem is trivially equivalent to the following:

$$
\begin{aligned}
\min _{w} \min _{a, b} & \sum_{i=1}^{n}\left((a-b)^{T} x_{i}-y_{i}\right)^{2}+\lambda 1^{T}(a+b) \\
\text { subject to } & a_{i} \geqslant 0 \text { for all } i \quad b_{i} \geqslant 0 \text { for all } i, \\
& a-b=w \\
& a+b=|w|
\end{aligned}
$$

- Claim: Don't need constraint $a+b=|w|$.
- $a^{\prime} \leftarrow a-\min (a, b)$ and $b^{\prime} \leftarrow b-\min (a, b)$ at least as good
- So if a and b are minimizers, at least one is 0 .
- Since $a-b=w$, we must have $a=w^{+}$and $b=w^{-}$. So also $a+b=|w|$.

The Lasso as a Quadratic Program

$$
\begin{aligned}
\min _{w} \min _{a, b} & \sum_{i=1}^{n}\left((a-b)^{T} x_{i}-y_{i}\right)^{2}+\lambda 1^{T}(a+b) \\
\text { subject to } & a_{i} \geqslant 0 \text { for all } i \quad b_{i} \geqslant 0 \text { for all } i, \\
& a-b=w
\end{aligned}
$$

- Claim: Can remove $\min _{w}$ and the constraint $a-b=w$.
- One way to see this is by switching the order of minimization...

The Lasso as a Quadratic Program

$$
\begin{aligned}
\min _{a, b} \min _{w} & \sum_{i=1}^{n}\left((a-b)^{T} x_{i}-y_{i}\right)^{2}+\lambda 1^{T}(a+b) \\
\text { subject to } & a_{i} \geqslant 0 \text { for all } i \quad b_{i} \geqslant 0 \text { for all } i, \\
& a-b=w
\end{aligned}
$$

- For any $a \geqslant 0, b \geqslant 0$, there's always a single w that satisfies the constraints.
- So the inner minimum is always attained at $w=a-b$.
- Since w doesn't show up in the objective function,
- nothing changes if we drop $\min _{w}$ and the constraint.

The Lasso as a Quadratic Program

- So lasso optimization problem is equivalent to

$$
\begin{aligned}
\min _{a, b} & \sum_{i=1}^{n}\left((a-b)^{T} x_{i}-y_{i}\right)^{2}+\lambda 1^{T}(a+b) \\
\text { subject to } & a_{i} \geqslant 0 \text { for all } i \quad b_{i} \geqslant 0 \text { for all } i,
\end{aligned}
$$

where at the end we take $w^{*}=a^{*}-b^{*}$ (and we've shown above that a^{*} and b^{*} are positive and negative parts of w^{*}, respectively.)

- Has constraints - how do we optimize?

Projected SGD

$$
\begin{aligned}
\min _{w^{+}, w^{-} \in \mathbf{R}^{d}} & \sum_{i=1}^{n}\left(\left(w^{+}-w^{-}\right)^{T} x_{i}-y_{i}\right)^{2}+\lambda 1^{T}\left(w^{+}+w^{-}\right) \\
\text {subject to } & w_{i}^{+} \\
& \geqslant 0 \text { for all } i \\
w_{i}^{-} & \geqslant 0 \text { for all } i
\end{aligned}
$$

- Just like SGD, but after each step
- Project w^{+}and w^{-}into the constraint set.
- In other words, if any component of w^{+}or w^{-}becomes negative, set it back to 0 .

Finding the Lasso Solution: Coordinate Descent (Shooting Method)

Coordinate Descent Method

- Goal: Minimize $L(w)=L\left(w_{1}, \ldots, w_{d}\right)$ over $w=\left(w_{1}, \ldots, w_{d}\right) \in \mathbf{R}^{d}$.
- In gradient descent or SGD,
- each step potentially changes all entries of w.
- In each step of coordinate descent,
- we adjust only a single w_{i}.
- In each step, solve

$$
w_{i}^{\text {new }}=\underset{w_{i}}{\arg \min } L\left(w_{1}, \ldots, w_{i-1}, w_{i}, w_{i+1}, \ldots, w_{d}\right)
$$

- Solving this argmin may itself be an iterative process.
- Coordinate descent is great when
- it's easy or easier to minimize w.r.t. one coordinate at a time

Coordinate Descent Method

Coordinate Descent Method

Goal: Minimize $L(w)=L\left(w_{1}, \ldots w_{d}\right)$ over $w=\left(w_{1}, \ldots, w_{d}\right) \in \mathbf{R}^{d}$.

- Initialize $w^{(0)}=0$
- while not converged:
- Choose a coordinate $j \in\{1, \ldots, d\}$
- $w_{j}^{\text {new }} \leftarrow \arg \min _{w_{j}} L\left(w_{1}^{(t)}, \ldots, w_{j-1}^{(t)}, \mathbf{w}_{\mathbf{j}}, w_{j+1}^{(t)}, \ldots, w_{d}^{(t)}\right)$
- $w_{j}^{(t+1)} \leftarrow w_{j}^{\text {new }}$ and $w^{(t+1)} \leftarrow w^{(t)}$
- $t \leftarrow t+1$
- Random coordinate choice \Longrightarrow stochastic coordinate descent
- Cyclic coordinate choice \Longrightarrow cyclic coordinate descent

In general, we will adjust each coordinate several times.

Coordinate Descent Method for Lasso

- Why mention coordinate descent for Lasso?
- In Lasso, the coordinate minimization has a closed form solution!

Coordinate Descent Method for Lasso

Closed Form Coordinate Minimization for Lasso

$$
\hat{w}_{j}=\underset{w_{j} \in \mathbf{R}}{\arg \min } \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}+\lambda|w|_{1}
$$

Then

$$
\begin{gathered}
\hat{w}_{j}= \begin{cases}\left(c_{j}+\lambda\right) / a_{j} & \text { if } c_{j}<-\lambda \\
0 & \text { if } c_{j} \in[-\lambda, \lambda] \\
\left(c_{j}-\lambda\right) / a_{j} & \text { if } c_{j}>\lambda\end{cases} \\
a_{j}=2 \sum_{i=1}^{n} x_{i, j}^{2}
\end{gathered}
$$

where w_{-j} is w without component j and similarly for $x_{i,-j}$.

Coordinate Descent: When does it work?

- Suppose we're minimizing $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$.
- Sufficient conditions:
(1) f is continuously differentiable and
(2) f is strictly convex in each coordinate
- But lasso objective

$$
\sum_{i=1}^{n}\left(w^{T} x_{i}-y_{i}\right)^{2}+\lambda\|w\|_{1}
$$

is not differentiable...

- Luckily there are weaker conditions...

Coordinate Descent: The Separability Condition

Theorem

${ }^{\text {a }}$ If the objective f has the following structure

$$
f\left(w_{1}, \ldots, w_{d}\right)=g\left(w_{1}, \ldots, w_{d}\right)+\sum_{j=1}^{d} h_{j}\left(x_{j}\right),
$$

where

- $g: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is differentiable and convex, and
- each $h_{j}: \mathbf{R} \rightarrow \mathbf{R}$ is convex (but not necessarily differentiable)
then the coordinate descent algorithm converges to the global minimum.

[^0]
Coordinate Descent Method - Variation

- Suppose there's no closed form? (e.g. logistic regression)
- Do we really need to fully solve each inner minimization problem?
- A single projected gradient step is enough for ℓ_{1} regularization!
- Shalev-Shwartz \& Tewari's "Stochastic Methods..." (2011)

Stochastic Coordinate Descent for Lasso - Variation

- Let $\tilde{w}=\left(w^{+}, w^{-}\right) \in \mathbf{R}^{2 d}$ and

$$
L(\tilde{w})=\sum_{i=1}^{n}\left(\left(w^{+}-w^{-}\right)^{T} x_{i}-y_{i}\right)^{2}+\lambda\left(w^{+}+w^{-}\right)
$$

Stochastic Coordinate Descent for Lasso - Variation
Goal: Minimize $L(\tilde{w})$ s.t. $w_{i}^{+}, w_{i}^{-} \geqslant 0$ for all i.

- Initialize $\tilde{w}^{(0)}=0$
- while not converged:
- Randomly choose a coordinate $j \in\{1, \ldots, 2 d\}$
- $\tilde{w}_{j} \leftarrow \tilde{w}_{j}+\max \left\{-\tilde{w}_{j},-\nabla_{j} L(\tilde{w})\right\}$

[^0]: ${ }^{\text {a T Tseng 2001: "Convergence of a Block Coordinate Descent Method for Nondifferentiable }}$ Minimization"

