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Hypothesis Spaces

We’ve spoken vaguely about “bigger” and “smaller” hypothesis spaces
In practice, convenient to work with a nested sequence of spaces:

F1 ⊂ F2 ⊂ Fn · · · ⊂ F

Polynomial Functions

F = {all polynomial functions}
Fd = {all polynomials of degree 6 d}
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Complexity Measures for Decision Functions

Number of variables / features
Depth of a decision tree
Degree of polynomial
How about for linear decision functions, i.e. x 7→ wT x = w1x1+ · · ·+wdxd?

`0 complexity: number of non-zero coefficients
∑d

i=1 1(wi 6= 0).
`1 “lasso” complexity:

∑d
i=1 |wi |, for coefficients w1, . . . ,wd

`2 “ridge” complexity:
∑d

i=1w
2
i for coefficients w1, . . . ,wd
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Nested Hypothesis Spaces from Complexity Measure

Hypothesis space: F
Complexity measure Ω : F→ [0,∞)

Consider all functions in F with complexity at most r :

Fr = {f ∈ F |Ω(f )6 r }

Increasing complexities: r = 0,1.2,2.6,5.4, . . . gives nested spaces:

F0 ⊂ F1.2 ⊂ F2.6 ⊂ F5.4 ⊂ ·· · ⊂ F

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 January 30, 2018 5 / 50



Constrained Empirical Risk Minimization

Constrained ERM (Ivanov regularization)

For complexity measure Ω : F→ [0,∞) and fixed r > 0,

min
f∈F

1
n

n∑
i=1

`(f (xi ),yi )

s.t.Ω(f )6 r

Choose r using validation data or cross-validation.
Each r corresponds to a different hypothesis spaces. Could also write:

min
f∈Fr

1
n

n∑
i=1

`(f (xi ),yi )
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Penalized Empirical Risk Minimization

Penalized ERM (Tikhonov regularization)

For complexity measure Ω : F→ [0,∞) and fixed λ> 0,

min
f∈F

1
n

n∑
i=1

`(f (xi ),yi )+λΩ(f )

Choose λ using validation data or cross-validation.
(Ridge regression in homework is of this form.)
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Ivanov vs Tikhonov Regularization

Let L : F→ R be any performance measure of f
e.g. L(f ) could be the empirical risk of f

For many L and Ω, Ivanov and Tikhonov are “equivalent”.
What does this mean?

Any solution f ∗ you could get from Ivanov, can also get from Tikhonov.
Any solution f ∗ you could get from Tikhonov, can also get from Ivanov.

In practice, both approaches are effective.
Tikhonov convenient because it’s unconstrained minimization.

Can get conditions for equivalence from Lagrangian duality theory – details in homework.
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Ivanov vs Tikhonov Regularization (Details)

Ivanov and Tikhonov regularization are equivalent if:
1 For any choice of r > 0, any Ivanov solution

f ∗r ∈ argmin
f∈F

L(f ) s.t. Ω(f )6 r

is also a Tikhonov solution for some λ > 0. That is, ∃λ > 0 such that

f ∗r ∈ argmin
f∈F

L(f )+λΩ(f ).

2 Conversely, for any choice of λ > 0, any Tikhonov solution:

f ∗λ ∈ argmin
f∈F

L(f )+λΩ(f )

is also an Ivanov solution for some r > 0. That is, ∃r > 0 such that

f ∗λ ∈ argmin
f∈F

L(f ) s.t. Ω(f )6 r

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 January 30, 2018 9 / 50



`1 and `2 Regularization
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Linear Least Squares Regression

Consider linear models

F =
{
f : Rd → R | f (x) = wT x for w ∈ Rd

}
Loss: `(ŷ ,y) = (y − ŷ)2

Training data Dn = ((x1,y1), . . . ,(xn,yn))

Linear least squares regression is ERM for ` over F:

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2

Can overfit when d is large compared to n.
e.g.: d � n very common in Natural Language Processing problems (e.g. a 1M features
for 10K documents).
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Ridge Regression: Workhorse of Modern Data Science

Ridge Regression (Tikhonov Form)

The ridge regression solution for regularization parameter λ> 0 is

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖22,

where ‖w‖22 = w2
1 + · · ·+w2

d is the square of the `2-norm.

Ridge Regression (Ivanov Form)

The ridge regression solution for complexity parameter r > 0 is

ŵ = argmin
‖w‖226r2

1
n

n∑
i=1

{
wT xi − yi

}2
.
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How does `2 regularization induce “regularity”?

For f̂ (x) = ŵT x , f̂ is Lipschitz continuous with Lipschitz constant L= ‖ŵ‖2.
That is, when moving from x to x +h, f̂ changes no more than L‖h‖.
So `2 regularization controls the maximum rate of change of f̂ .
Proof:

∣∣∣f̂ (x +h)− f̂ (x)
∣∣∣ = |ŵT (x +h)− ŵT x |=

∣∣ŵTh
∣∣

6 ‖ŵ‖2‖h‖2(Cauchy-Schwarz inequality)

Since ‖ŵ‖1 > ‖ŵ‖2, an `1 constraint will also give a Lipschitz bound.
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Ridge Regression: Regularization Path

Modified from Hastie, Tibshirani, and Wainwright’s Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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Lasso Regression: Workhorse (2) of Modern Data Science

Lasso Regression (Tikhonov Form)

The lasso regression solution for regularization parameter λ> 0 is

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖1,

where ‖w‖1 = |w1|+ · · ·+ |wd | is the `1-norm.

Lasso Regression (Ivanov Form)

The lasso regression solution for complexity parameter r > 0 is

ŵ = argmin
‖w‖16r

1
n

n∑
i=1

{
wT xi − yi

}2
.
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Lasso Regression: Regularization Path

Modified from Hastie, Tibshirani, and Wainwright’s Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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Ridge vs. Lasso: Regularization Paths

Modified from Hastie, Tibshirani, and Wainwright’s Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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Lasso Gives Feature Sparsity: So What?

Coefficient are 0 =⇒ don’t need those features. What’s the gain?

Time/expense to compute/buy features
Memory to store features (e.g. real-time deployment)
Identifies the important features
Better prediction? sometimes
As a feature-selection step for training a slower non-linear model
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Ivanov and Tikhonov Equivalent?

For ridge regression and lasso regression (and much more)
the Ivanov and Tikhonov formulations are equivalent
[Optional homework problem, upcoming.]

We will use whichever form is most convenient.
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Why does Lasso regression give sparse solutions?
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Parameter Space

Illustrate affine prediction functions in parameter space.
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The `1 and `2 Norm Constraints

For visualization, restrict to 2-dimensional input space
F = {f (x) = w1x1+w2x2} (linear hypothesis space)
Represent F by

{
(w1,w2) ∈ R2

}
.

`2 contour:
w2

1 +w2
2 = r

`1 contour:
|w1|+ |w2|= r

Where are the “sparse” solutions?

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 January 30, 2018 22 / 50



The Famous Picture for `1 Regularization

f ∗r = argminw∈R2
1
n

∑n
i=1

(
wT xi − yi

)2 subject to |w1|+ |w2|6 r

Blue region: Area satisfying complexity constraint: |w1|+ |w2|6 r

Red lines: contours of R̂n(w) =
∑n

i=1
(
wT xi − yi

)2.

KPM Fig. 13.3
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The Empirical Risk for Square Loss

Denote the empirical risk of f (x) = wT x by

R̂n(w) =
1
n
‖Xw − y‖2,

where X is the design matrix.

R̂n is minimized by ŵ =
(
XTX

)−1
XT y , the OLS solution.

What does R̂n look like around ŵ?
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The Empirical Risk for Square Loss

By “completing the square”, we can show for any w ∈ Rd :

R̂n(w) =
1
n
(w − ŵ)T XTX (w − ŵ)+ R̂n(ŵ)

Set of w with R̂n(w) exceeding R̂n(ŵ) by c > 0 is{
w | R̂n(w) = c+ R̂n(ŵ)

}
=
{
w | (w − ŵ)T XTX (w − ŵ) = nc

}
,

which is an ellipsoid centered at ŵ .
We’ll derive this in homework.
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The Famous Picture for `2 Regularization

f ∗r = argminw∈R2
∑n

i=1
(
wT xi − yi

)2 subject to w2
1 +w2

2 6 r

Blue region: Area satisfying complexity constraint: w2
1 +w2

2 6 r

Red lines: contours of R̂n(w) =
∑n

i=1
(
wT xi − yi

)2.

KPM Fig. 13.3
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Why are Lasso Solutions Often Sparse?

Suppose design matrix X is orthogonal, so XTX = I , and contours are circles.
Then OLS solution in green or red regions implies `1 constrained solution will be at corner

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.6
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The
(
`q
)q Constraint

Generalize to `q : (‖w‖q)q = |w1|
q+ |w2|

q.
Note: ‖w‖q is a norm if q > 1, but not for q ∈ (0,1)
F = {f (x) = w1x1+w2x2}.
Contours of ‖w‖qq = |w1|

q+ |w2|
q:
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`q Even Sparser

Suppose design matrix X is orthogonal, so XTX = I , and contours are circles.
Then OLS solution in green or red regions implies `q constrained solution will be at corner

`q-ball constraint is not convex, so more difficult to optimize.
Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.9
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The Quora Picture

From Quora: “Why is L1 regularization supposed to lead to sparsity than L2? [sic]”
(google it)

Does this picture have any interpretation that makes sense? (Aren’t those lines supposed
to be ellipses?)
Yes... we can revisit.

Figure from https://www.quora.com/Why-is-L1-regularization-supposed-to-lead-to-sparsity-than-L2.
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Finding the Lasso Solution: Lasso as Quadratic Program
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How to find the Lasso solution?

How to solve the Lasso?

min
w∈Rd

n∑
i=1

(
wT xi − yi

)2
+λ‖w‖1

‖w‖1 = |w1|+ |w2| is not differentiable!
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Splitting a Number into Positive and Negative Parts

Consider any number a ∈ R.
Let the positive part of a be

a+ = a1(a> 0).

Let the negative part of a be
a− =−a1(a6 0).

Do you see why a+ > 0 and a− > 0?
How do you write a in terms of a+ and a−?
How do you write |a| in terms of a+ and a−?
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How to find the Lasso solution?

The Lasso problem

min
w∈Rd

n∑
i=1

(
wT xi − yi

)2
+λ‖w‖1

Replace each wi by w+
i −w−

i .
Write w+ =

(
w+

1 , . . . ,w+
d

)
and w− =

(
w−

1 , . . . ,w−
d

)
.
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The Lasso as a Quadratic Program

We will show: substituting w = w+−w− and |w |= w++w− gives an equivalent problem:

min
w+,w−

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ1T

(
w++w−

)
subject to w+

i > 0 for all i w−
i > 0 for all i ,

Objective is differentiable (in fact, convex and quadratic)
2d variables vs d variables and 2d constraints vs no constraints
A “quadratic program”: a convex quadratic objective with linear constraints.

Could plug this into a generic QP solver.
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Possible point of confusion

Equivalent to lasso problem:

min
w+,w−

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ1T

(
w++w−

)
subject to w+

i > 0 for all i w−
i > 0 for all i ,

When we plug this optimization problem into a QP solver,
it just sees 2d variables and 2d constraints.
Doesn’t know we want w+

i and w−
i to be positive and negative parts of wi .

Turns out – they will come out that way as a result of the optimization!

But to eliminate confusion, let’s start by calling them ai and bi and prove our claim...
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The Lasso as a Quadratic Program

Lasso problem is trivially equivalent to the following:

min
w

min
a,b

n∑
i=1

(
(a−b)T xi − yi

)2
+λ1T (a+b)

subject to ai > 0 for all i bi > 0 for all i ,
a−b = w

a+b = |w |

Claim: Don’t need constraint a+b = |w |.
a ′← a−min(a,b) and b ′← b−min(a,b) at least as good
So if a and b are minimizers, at least one is 0.
Since a−b = w , we must have a = w+ and b = w−. So also a+b = |w |.
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The Lasso as a Quadratic Program

min
w

min
a,b

n∑
i=1

(
(a−b)T xi − yi

)2
+λ1T (a+b)

subject to ai > 0 for all i bi > 0 for all i ,
a−b = w

Claim: Can remove minw and the constraint a−b = w .

One way to see this is by switching the order of minimization...
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The Lasso as a Quadratic Program

min
a,b

min
w

n∑
i=1

(
(a−b)T xi − yi

)2
+λ1T (a+b)

subject to ai > 0 for all i bi > 0 for all i ,
a−b = w

For any a> 0,b > 0, there’s always a single w that satisfies the constraints.

So the inner minimum is always attained at w = a−b.

Since w doesn’t show up in the objective function,
nothing changes if we drop minw and the constraint.
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The Lasso as a Quadratic Program

So lasso optimization problem is equivalent to

min
a,b

n∑
i=1

(
(a−b)T xi − yi

)2
+λ1T (a+b)

subject to ai > 0 for all i bi > 0 for all i ,

where at the end we take w∗ = a∗−b∗ (and we’ve shown above that a∗ and b∗ are
positive and negative parts of w∗, respectively.)

Has constraints – how do we optimize?
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Projected SGD

min
w+,w−∈Rd

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ1T

(
w++w−

)
subject to w+

i > 0 for all i
w−
i > 0 for all i

Just like SGD, but after each step
Project w+ and w− into the constraint set.
In other words, if any component of w+ or w− becomes negative, set it back to 0.
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Finding the Lasso Solution: Coordinate Descent (Shooting Method)
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Coordinate Descent Method

Goal: Minimize L(w) = L(w1, . . . ,wd) over w = (w1, . . . ,wd) ∈ Rd .
In gradient descent or SGD,

each step potentially changes all entries of w .
In each step of coordinate descent,

we adjust only a single wi .

In each step, solve

wnew
i = argmin

wi

L(w1, . . . ,wi−1,wi,wi+1, . . . ,wd)

Solving this argmin may itself be an iterative process.

Coordinate descent is great when
it’s easy or easier to minimize w.r.t. one coordinate at a time
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Coordinate Descent Method

Coordinate Descent Method

Goal: Minimize L(w) = L(w1, . . .wd) over w = (w1, . . . ,wd) ∈ Rd .
Initialize w (0) = 0
while not converged:

Choose a coordinate j ∈ {1, . . . ,d}
wnew
j ← argminwj

L(w
(t)
1 , . . . ,w

(t)
j−1,wj,w

(t)
j+1, . . . ,w

(t)
d )

w
(t+1)
j ← wnew

j and w (t+1)← w (t)

t← t+1

Random coordinate choice =⇒ stochastic coordinate descent
Cyclic coordinate choice =⇒ cyclic coordinate descent

In general, we will adjust each coordinate several times.
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Coordinate Descent Method for Lasso

Why mention coordinate descent for Lasso?
In Lasso, the coordinate minimization has a closed form solution!
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Coordinate Descent Method for Lasso

Closed Form Coordinate Minimization for Lasso

ŵj = argmin
wj∈R

n∑
i=1

(
wT xi − yi

)2
+λ |w |1

Then

ŵj =


(cj +λ)/aj if cj <−λ

0 if cj ∈ [−λ,λ]

(cj −λ)/aj if cj > λ

aj = 2
n∑

i=1

x2
i ,j cj = 2

n∑
i=1

xi ,j(yi −wT
−jxi ,−j)

where w−j is w without component j and similarly for xi ,−j .
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Coordinate Descent: When does it work?

Suppose we’re minimizing f : Rd → R.
Sufficient conditions:

1 f is continuously differentiable and
2 f is strictly convex in each coordinate

But lasso objective
n∑

i=1

(
wT xi − yi

)2
+λ‖w‖1

is not differentiable...
Luckily there are weaker conditions...
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Coordinate Descent: The Separability Condition

Theorem
aIf the objective f has the following structure

f (w1, . . . ,wd) = g(w1, . . . ,wd)+

d∑
j=1

hj(xj),

where
g : Rd → R is differentiable and convex, and
each hj : R→ R is convex (but not necessarily differentiable)

then the coordinate descent algorithm converges to the global minimum.
aTseng 2001: “Convergence of a Block Coordinate Descent Method for Nondifferentiable

Minimization”
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Coordinate Descent Method – Variation

Suppose there’s no closed form? (e.g. logistic regression)
Do we really need to fully solve each inner minimization problem?
A single projected gradient step is enough for `1 regularization!

Shalev-Shwartz & Tewari’s “Stochastic Methods...” (2011)
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Stochastic Coordinate Descent for Lasso – Variation

Let w̃ = (w+,w−) ∈ R2d and

L(w̃) =

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ

(
w++w−

)

Stochastic Coordinate Descent for Lasso - Variation

Goal: Minimize L(w̃) s.t. w+
i ,w−

i > 0 for all i .

Initialize w̃ (0) = 0
while not converged:

Randomly choose a coordinate j ∈ {1, . . . ,2d}
w̃j ← w̃j +max

{
−w̃j ,−∇jL(w̃)

}

David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 January 30, 2018 50 / 50


	Tikhonov and Ivanov Regularization
	1 and 2 Regularization
	Why does Lasso regression give sparse solutions?
	Finding the Lasso Solution: Lasso as Quadratic Program
	Finding the Lasso Solution: Coordinate Descent (Shooting Method)

