# Loss Functions for Regression and Classification 

David S. Rosenberg<br>New York University<br>February 6, 2018

## Contents

(1) Regression Loss Functions
(2) Classification Loss Functions

## Regression Loss Functions

## Regression Notation

- Regression spaces:
- Input space $X=\mathbf{R}^{d}$
- Action space $\mathcal{A}=\mathbf{R}$
- Outcome space $y=\mathbf{R}$.
- Since $\mathcal{A}=y$, we can use more traditional notation:
- $\hat{y}$ is the predicted value (the action)
- $y$ is the actual observed value (the outcome)


## Loss Functions for Regression

- In general, loss function may take the form

$$
(\hat{y}, y) \mapsto \ell(\hat{y}, y) \in \mathbf{R}
$$

- Regression losses usually only depend on the residual $r=y-\hat{y}$.
- what you have to add to your prediction to get the right answer
- Loss $\ell(\hat{y}, y)$ is called distance-based if it
(1) only depends on the residual:

$$
\ell(\hat{y}, y)=\psi(y-\hat{y}) \quad \text { for some } \psi: \mathbf{R} \rightarrow \mathbf{R}
$$

(2) loss is zero when residual is 0 :

$$
\psi(0)=0
$$

## Distance-Based Losses are Translation Invariant

- Distance-based losses are translation-invariant. That is,

$$
\ell(\hat{y}+b, y+b)=\ell(\hat{y}, y) \quad \forall b \in \mathbf{R} .
$$

- When might you not want to use a translation-invariant loss?
- Sometimes relative error $\frac{\hat{y}-y}{y}$ is a more natural loss (but not translation-invariant)
- Often you can transform response y so it's translation-invariant (e.g. log transform)


## Some Losses for Regression

- Residual: $r=y-\hat{y}$
- Square or $\ell_{2}$ Loss: $\ell(r)=r^{2}$
- Absolute or Laplace or $\ell_{1}$ Loss: $\ell(r)=|r|$

| $y$ | $\hat{y}$ | $\|r\|=\|y-\hat{y}\|$ | $r^{2}=(y-\hat{y})^{2}$ |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 1 |
| 5 | 0 | 5 | 25 |
| 10 | 0 | 10 | 100 |
| 50 | 0 | 50 | 2500 |

- Outliers typically have large residuals.
- Square loss much more affected by outliers than absolute loss.


## Loss Function Robustness

- Robustness refers to how affected a learning algorithm is by outliers.



## Some Losses for Regression

- Square or $\ell_{2}$ Loss: $\ell(r)=r^{2}$ (not robust)
- Absolute or Laplace Loss: $\ell(r)=|r|$ (not differentiable)
- gives median regression
- Huber Loss: Quadratic for $|r| \leqslant \delta$ and linear for $|r|>\delta$ (robust and differentiable)

- $x$-axis is the residual $y-\hat{y}$.


## Classification Loss Functions

## The Classification Problem

- Outcome space $y=\{-1,1\}$
- Action space $\mathcal{A}=\{-1,1\}$
- 0-1 loss for $f: X \rightarrow\{-1,1\}$ :

$$
\ell(f(x), y)=1(f(x) \neq y)
$$

- But let's allow real-valued predictions $f: X \rightarrow \mathbf{R}$ :

$$
\begin{aligned}
& f(x)>0 \Longrightarrow \text { Predict } 1 \\
& f(x)<0 \Longrightarrow \text { Predict }-1
\end{aligned}
$$

## The Score Function

- Action space $\mathcal{A}=\mathbf{R} \quad$ Output space $y=\{-1,1\}$
- Real-valued prediction function $f: X \rightarrow \mathbf{R}$


## Definition

The value $f(x)$ is called the score for the input $x$.

- In this context, $f$ may be called a score function.
- Intuitively, magnitude of the score represents the confidence of our prediction.


## The Margin

## Definition

The margin (or functional margin) for predicted score $\hat{y}$ and true class $y \in\{-1,1\}$ is $y \hat{y}$.

- The margin often looks like $y f(x)$, where $f(x)$ is our score function.
- The margin is a measure of how correct we are.
- If $y$ and $\hat{y}$ are the same sign, prediction is correct and margin is positive.
- If $y$ and $\hat{y}$ have different sign, prediction is incorrect and margin is negative.
- We want to maximize the margin.


## Margin-Based Losses

- Most classification losses depend only on the margin.
- Such a loss is called a margin-based loss.
- (There is a related concept, the geometric margin, in the notes on hard-margin SVM.)


## Classification Losses: $0-1$ Loss

- Empirical risk for 0-1 loss:

$$
\hat{R}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n} 1\left(y_{i} f\left(x_{i}\right) \leqslant 0\right)
$$

Minimizing empirical 0-1 risk not computationally feasible
$\hat{R}_{n}(f)$ is non-convex, not differentiable (in fact, discontinuous!). Optimization is NP-Hard.

## Classification Losses

Zero-One loss: $\ell_{0-1}=1(m \leqslant 0)$


- x-axis is margin: $m>0 \Longleftrightarrow$ correct classification


## Classification Losses

SVM/Hinge loss: $\ell_{\text {Hinge }}=\max (1-m, 0)$


Hinge is a convex, upper bound on $0-1$ loss. Not differentiable at $m=1$. We have a "margin error" when $m<1$.

## (Soft Margin) Linear Support Vector Machine

- Hypothesis space: $\mathcal{F}=\left\{f_{w}(x)=w^{T} x \mid w \in \mathbf{R}^{d}\right\}$.
- Loss: $\ell(m)=\max (1-m, 0)$ [Hinge loss - sometimes called SVM loss]
- Regularization: $\ell_{2}$

$$
\min _{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \max \left(1-y_{i} f_{w}\left(x_{i}\right), 0\right)+\lambda\|w\|_{2}^{2}
$$

## Classification Losses

Logistic/Log loss: $\ell_{\text {Logistic }}=\log \left(1+e^{-m}\right)$


Logistic loss is differentiable. Logistic loss always wants more margin (loss never 0).

## What About Square Loss for Classification?

- Action space $\mathcal{A}=\mathbf{R} \quad$ Output space $y=\{-1,1\}$
- Loss $\ell(f(x), y)=(f(x)-y)^{2}$.
- Turns out, can write this in terms of margin $m=f(x) y$ :

$$
\ell(f(x), y)=(f(x)-y)^{2}=(1-f(x) y)^{2}=(1-m)^{2}
$$

- Prove using fact that $y^{2}=1$, since $y \in\{-1,1\}$.


## What About Square Loss for Classification?



Heavily penalizes outliers (e.g. mislabeled examples).
May have higher sample complexity (i.e. needs more data) than hinge \& logistic ${ }^{1}$.
$1_{\text {Rosasco et al's "Are Loss Functions All the Same?" http://web.mit.edu/lrosasco/www/publications/loss.pdf }}$

