Subgradient Descent

David S. Rosenberg

New York University

February 7, 2018
Motivation and Review: Support Vector Machines
The Classification Problem

- Output space $Y = \{-1, 1\}$
- Action space $A = \mathbb{R}$
- **Real-valued prediction function** $f : \mathcal{X} \rightarrow \mathbb{R}$
- The value $f(x)$ is called the **score** for the input x.
- Intuitively, magnitude of the score represents the **confidence of our prediction**.
- Typical convention:

 $$f(x) > 0 \implies \text{Predict 1}$$
 $$f(x) < 0 \implies \text{Predict } -1$$

 (But we can choose other thresholds...)
The margin (or functional margin) for predicted score \hat{y} and true class $y \in \{-1, 1\}$ is $y\hat{y}$.

The margin often looks like $yf(x)$, where $f(x)$ is our score function.

The margin is a measure of how correct we are.

We want to maximize the margin.
SVM/Hinge loss: \(\ell_{\text{Hinge}} = \max\{1 - m, 0\} = (1 - m)_+ \)

Not differentiable at \(m = 1 \). We have a “margin error” when \(m < 1 \).
Hypothesis space $\mathcal{F} = \{ f(x) = w^T x \mid w \in \mathbb{R}^d \}$.

Loss $\ell(m) = \max (0, 1 - m)$

l_2 regularization

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} \max (0, 1 - y_i w^T x_i) + \lambda \| w \|_2^2$$
SVM Optimization Problem (no intercept)

- SVM objective function:
 \[J(w) = \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i [w^T x_i]) + \lambda \|w\|^2. \]

- Not differentiable... but let’s think about gradient descent anyway.

- Derivative of hinge loss \(\ell(m) = \max(0, 1 - m) \):
 \[
 \ell'(m) = \begin{cases}
 0 & m > 1 \\
 -1 & m < 1 \\
 \text{undefined} & m = 1
 \end{cases}
 \]
We need gradient with respect to parameter vector $w \in \mathbb{R}^d$:

$$\nabla_w \ell \left(y_i w^T x_i \right) = \ell' \left(y_i w^T x_i \right) y_i x_i \text{ (chain rule)}$$

$$= \begin{cases}
0 & y_i w^T x_i > 1 \\
-1 & y_i w^T x_i < 1 \\
\text{undefined} & y_i w^T x_i = 1
\end{cases} y_i x_i \text{ (expanded } m \text{ in } \ell'(m))$$

$$= \begin{cases}
0 & y_i w^T x_i > 1 \\
- y_i x_i & y_i w^T x_i < 1 \\
\text{undefined} & y_i w^T x_i = 1
\end{cases}$$
“Gradient” of SVM Objective

\[
\nabla_w \ell (y_i w^T x_i) = \begin{cases}
0 & y_i w^T x_i > 1 \\
-y_i x_i & y_i w^T x_i < 1 \\
\text{undefined} & y_i w^T x_i = 1
\end{cases}
\]

So

\[
\nabla_w J(w) = \nabla_w \left(\frac{1}{n} \sum_{i=1}^{n} \ell (y_i w^T x_i) + \lambda \|w\|^2 \right)
\]

\[
= \frac{1}{n} \sum_{i=1}^{n} \nabla_w \ell (y_i w^T x_i) + 2\lambda w
\]

\[
= \begin{cases}
\frac{1}{n} \sum_{i:y_i w^T x_i < 1} (-y_i x_i) + 2\lambda w & \text{all } y_i w^T x_i \neq 1 \\
\text{undefined} & \text{otherwise}
\end{cases}
\]
The gradient of the SVM objective is

$$\nabla_w J(w) = \frac{1}{n} \sum_{i: y_i w^T x_i < 1} (-y_i x_i) + 2\lambda w$$

when $y_i w^T x_i \neq 1$ for all i, and otherwise is undefined.

Potential arguments for why we shouldn’t care about the points of nondifferentiability:

- If we start with a random w, will we ever hit exactly $y_i w^T x_i = 1$?
- If we did, could we perturb the step size by ϵ to miss such a point?
- Does it even make sense to check $y_i w^T x_i = 1$ with floating point numbers?
Gradient Descent on SVM Objective?

- If we blindly apply gradient descent from a random starting point, it seems unlikely that we'll hit a point where the gradient is undefined.

- Still, doesn’t mean that gradient descent will work if objective not differentiable!

- Theory of subgradients and subgradient descent will clear up any uncertainty.
Convexity and Sublevel Sets
A set C is convex if the line segment between any two points in C lies in C.

KPM Fig. 7.4
Convex and Concave Functions

Definition

A function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is convex if the line segment connecting any two points on the graph of f lies above the graph. f is concave if $-f$ is convex.
Examples of Convex Functions on \mathbb{R}

Examples

- $x \mapsto ax + b$ is both convex and concave on \mathbb{R} for all $a, b \in \mathbb{R}$.
- $x \mapsto |x|^p$ for $p \geq 1$ is convex on \mathbb{R}
- $x \mapsto e^{ax}$ is convex on \mathbb{R} for all $a \in \mathbb{R}$
- Every norm on \mathbb{R}^n is convex (e.g. $\|x\|_1$ and $\|x\|_2$)
- Max: $(x_1, \ldots, x_n) \mapsto \max\{x_1, \ldots, x_n\}$ is convex on \mathbb{R}^n
Simple Composition Rules

Examples

- If g is convex, and $Ax + b$ is an affine mapping, then $g(Ax + b)$ is convex.
- If g is convex then $\exp g(x)$ is convex.
- If g is convex and nonnegative and $p \geq 1$ then $g(x)^p$ is convex.
- If g is concave and positive then $\log g(x)$ is concave
- If g is concave and positive then $1/g(x)$ is convex.
Main Reference for Convex Optimization

- Boyd and Vandenberghe (2004)
 - Very clearly written, but has a ton of detail for a first pass.
 - See the Extreme Abridgement of Boyd and Vandenberghe.
Convex Optimization Problem: Standard Form

\[\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m
\end{align*} \]

where \(f_0, \ldots, f_m \) are convex functions.

Question: Is the \(\leq \) in the constraint just a convention? Could we also have used \(\geq \) or \(= \)?
Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a function. Then we have the following definitions:

Definition

A **level set** or **contour line** for the value c is the set of points $x \in \mathbb{R}^d$ for which $f(x) = c$.

Definition

A **sublevel** set for the value c is the set of points $x \in \mathbb{R}^d$ for which $f(x) \leq c$.

Theorem

If $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is convex, then the sublevel sets are convex.

(Proof straight from definitions.)
Convex Function

Plot courtesy of Brett Bernstein.
Contour Plot Convex Function: Sublevel Set

Is the sublevel set \(\{ x \mid f(x) \leq 1 \} \) convex?

Plot courtesy of Brett Bernstein.

David S. Rosenberg (New York University)
Nonconvex Function

Plot courtesy of Brett Bernstein.
Is the sublevel set \(\{ x \mid f(x) \leq 1 \} \) convex?
Fact: Intersection of Convex Sets is Convex
Level sets and superlevel sets of convex functions are not generally convex.
Convex Optimization Problem: Standard Form

minimize \(f_0(x) \)
subject to \(f_i(x) \leq 0, \quad i = 1, \ldots, m \)

where \(f_0, \ldots, f_m \) are convex functions.

- What can we say about each constraint set \(\{x \mid f_i(x) \leq 0\} \)? (convex)
- What can we say about the feasible set \(\{x \mid f_i(x) \leq 0, \ i = 1, \ldots, m\} \)? (convex)
Convex Optimization Problem: Implicit Form

Convex Optimization Problem: Implicit Form

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in C
\end{align*}
\]

where \(f \) is a convex function and \(C \) is a convex set.

An alternative “generic” convex optimization problem.
Convex and Differentiable Functions
First-Order Approximation

- Suppose \(f : \mathbb{R}^d \rightarrow \mathbb{R} \) is differentiable.
- Predict \(f(y) \) given \(f(x) \) and \(\nabla f(x) \)?
- Linear (i.e. “first order”) approximation:

\[
 f(y) \approx f(x) + \nabla f(x)^T(y - x)
\]

Boyd & Vandenberghe Fig. 3.2
First-Order Condition for Convex, Differentiable Function

- Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable.
- Then for any $x, y \in \mathbb{R}^d$
 \[f(y) \geq f(x) + \nabla f(x)^T (y - x) \]
- The linear approximation to f at x is a global underestimator of f:

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3
First-Order Condition for Convex, Differentiable Function

- Suppose $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is convex and differentiable
- Then for any $x, y \in \mathbb{R}^d$

\[f(y) \geq f(x) + \nabla f(x)^T (y - x) \]

Corollary

If $\nabla f(x) = 0$ then x is a global minimizer of f.

For convex functions, **local information gives global information**.
Subgradients
Subgradients

Definition

A vector \(g \in \mathbb{R}^d \) is a subgradient of \(f : \mathbb{R}^d \to \mathbb{R} \) at \(x \) if for all \(z \),

\[
f(z) \geq f(x) + g^T(z - x).
\]

Blue is a graph of \(f(x) \).
Each red line \(x \mapsto f(x_0) + g^T(x - x_0) \) is a global lower bound on \(f(x) \).
Subdifferential

Definitions

- f is **subdifferentiable** at x if \exists at least one subgradient at x.
- The set of all subgradients at x is called the **subdifferential**: $\partial f(x)$

Basic Facts

- f is convex and differentiable $\implies \partial f(x) = \{\nabla f(x)\}$.
- Any point x, there can be 0, 1, or infinitely many subgradients.
- $\partial f(x) = \emptyset \implies f$ is not convex.
Globla Optimality Condition

Definition

A vector $g \in \mathbb{R}^d$ is a **subgradient** of $f : \mathbb{R}^d \rightarrow \mathbb{R}$ at x if for all z,

$$f(z) \geq f(x) + g^T(z - x).$$

Corollary

If $0 \in \partial f(x)$, then x is a **global minimizer** of f.
Subdifferential of Absolute Value

- Consider \(f(x) = |x| \)

Plot on right shows \(\{(x, g) \mid x \in \mathbb{R}, g \in \partial f(x)\} \)
\[f(x_1, x_2) = |x_1| + 2|x_2| \]
Subgradients of $f(x_1, x_2) = |x_1| + 2|x_2|

- Let's find the subdifferential of $f(x_1, x_2) = |x_1| + 2|x_2|$ at $(3, 0)$.
- First coordinate of subgradient must be 1, from $|x_1|$ part (at $x_1 = 3$).
- Second coordinate of subgradient can be anything in $[-2, 2]$.
- So graph of $h(x_1, x_2) = f(3, 0) + g^T (x_1 - 3, x_2 - 0)$ is a global underestimate of $f(x_1, x_2)$, for any $g = (g_1, g_2)$, where $g_1 = 1$ and $g_2 \in [-2, 2]$.

Underestimating Hyperplane to $f(x_1, x_2) = |x_1| + 2|x_2|$
Contour plot of $f(x_1, x_2) = |x_1| + 2|x_2|$, with set of subgradients at $(3, 0)$.

\[\partial f(3, 0) = \{(1, b)^T \mid b \in [-2, 2]\} \]
Contour Lines and Gradients

- For function $f : \mathbb{R}^d \to \mathbb{R}$,
 - graph of function lives in \mathbb{R}^{d+1},
 - gradient and subgradient of f live in \mathbb{R}^d, and
 - contours, level sets, and sublevel sets are in \mathbb{R}^d.

- $f : \mathbb{R}^d \to \mathbb{R}$ continuously differentiable, $\nabla f(x_0) \neq 0$, then $\nabla f(x_0)$ normal to level set

 $$S = \{ x \in \mathbb{R}^d \mid f(x) = f(x_0) \}.$$

- Proof sketch in notes.
Gradient orthogonal to sublevel sets

\[\nabla f(x) \]

Plot courtesy of Brett Bernstein.