Subgradient Descent (Continued)

David S. Rosenberg
New York University
February 13, 2018

Contents

(1) Subgradients: Recap
(2) Subgradients give Ascent Directions
(3) Subgradient Descent

Subgradients: Recap

First-Order Approximation

- Suppose $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is differentiable.
- Predict $f(y)$ given $f(x)$ and $\nabla f(x)$?
- Linear (i.e. "first order") approximation:

$$
f(y) \approx f(x)+\nabla f(x)^{T}(y-x)
$$

Boyd \& Vandenberghe Fig. 3.2

First-Order Condition for Convex, Differentiable Function

- Suppose $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is convex and differentiable.
- Then for any $x, y \in \mathbf{R}^{d}$

$$
f(y) \geqslant f(x)+\nabla f(x)^{T}(y-x)
$$

- The linear approximation to f at x is a global underestimator of f :

Figure from Boyd \& Vandenberghe Fig. 3.2; Proof in Section 3.1.3

Subgradients

Definition

A vector $g \in \mathbf{R}^{d}$ is a subgradient of $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ at x if for all z,

$$
f(z) \geqslant f(x)+g^{T}(z-x)
$$

Blue is a graph of $f(x)$.
Each red line $x \mapsto f\left(x_{0}\right)+g^{T}\left(x-x_{0}\right)$ is a global lower bound on $f(x)$.

Subdifferential

Definitions

- f is subdifferentiable at x if \exists at least one subgradient at x.
- The set of all subgradients at x is called the subdifferential: $\partial f(x)$

Basic Facts

- f is convex and differentiable at $x \Longrightarrow \partial f(x)=\{\nabla f(x)\}$.
- At any point x, there can be 0,1 , or infinitely many subgradients.
- $\partial f(x)=\emptyset \Longrightarrow f$ is not convex.

Subgradients give Ascent Directions

Contour Lines and Gradients

- For function $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$,
- graph of function lives in \mathbf{R}^{d+1},
- gradient and subgradient of f live in \mathbf{R}^{d}, and
- contours, level sets, and sublevel sets are in \mathbf{R}^{d}.
- $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ continuously differentiable, $\nabla f\left(x_{0}\right) \neq 0$, then $\nabla f\left(x_{0}\right)$ normal to level set

$$
S=\left\{x \in \mathbf{R}^{d} \mid f(x)=f\left(x_{0}\right)\right\} .
$$

- Proof sketch in notes.

Gradient orthogonal to sublevel sets

Plot courtesy of Brett Bernstein.

Contour Lines and Subgradients

- A hyperplane H supports a set S if H intersects S and all of S lies one one side of H.
- If $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ has subgradient g at x_{0}, then the hyperplane H orthogonal to g at x_{0} must support the level set $S=\left\{x \in \mathbf{R}^{d} \mid f(x)=f\left(x_{0}\right)\right\}$.
Proof:
- For any y, we have $f(y) \geqslant f\left(x_{0}\right)+g^{T}\left(y-x_{0}\right)$. (def of subgradient)
- If y is strictly on side of H that g points in,
- then $g^{T}\left(y-x_{0}\right)>0$.
- So $f(y)>f\left(x_{0}\right)$.
- So y is not in the level set S.
- \therefore All elements of S must be on H or on the $-g$ side of H.

Subgradient of $f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+2\left|x_{2}\right|$

Plot courtesy of Brett Bernstein.

Subgradient of $f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+2\left|x_{2}\right|$

- Points on g side of H have larger f-values than $f\left(x_{0}\right)$. (from proof)
- But points on $-g$ side may not have smaller f-values.
- So -g may not be a descent direction. (shown in figure)

Subgradient Descent

Subgradient Descent

- Suppose f is convex, and we start optimizing at x_{0}.
- Repeat
- Step in a negative subgradient direction:

$$
x=x_{0}-t g,
$$

where $t>0$ is the step size and $g \in \partial f\left(x_{0}\right)$.

- -g not a descent direction - can this work?

Subgradient Gets Us Closer To Minimizer

Theorem

Suppose f is convex.

- Let $x=x_{0}-t g$, for $g \in \partial f\left(x_{0}\right)$.
- Let z be any point for which $f(z)<f\left(x_{0}\right)$.
- Then for small enough $t>0$,

$$
\|x-z\|_{2}<\left\|x_{0}-z\right\|_{2} .
$$

- Apply this with $z=x^{*} \in \arg \min _{x} f(x)$.
\Longrightarrow Negative subgradient step gets us closer to minimizer.

Subgradient Gets Us Closer To Minimizer (Proof)

- Let $x=x_{0}-t g$, for $g \in \partial f\left(x_{0}\right)$ and $t>0$.
- Let z be any point for which $f(z)<f\left(x_{0}\right)$.
- Then

$$
\begin{aligned}
\|x-z\|_{2}^{2} & =\left\|x_{0}-t g-z\right\|_{2}^{2} \\
& =\left\|x_{0}-z\right\|_{2}^{2}-2 t g^{T}\left(x_{0}-z\right)+t^{2}\|g\|_{2}^{2} \\
& \leqslant\left\|x_{0}-z\right\|_{2}^{2}-2 t\left[f\left(x_{0}\right)-f(z)\right]+t^{2}\|g\|_{2}^{2}
\end{aligned}
$$

- Consider $-2 t\left[f\left(x_{0}\right)-f(z)\right]+t^{2}\|g\|_{2}^{2}$.
- It's a convex quadratic (facing upwards).
- Has zeros at $t=0$ and $t=2\left(f\left(x_{0}\right)-f(z)\right) /\|g\|_{2}^{2}>0$.
- Therefore, it's negative for any

$$
t \in\left(0, \frac{2\left(f\left(x_{0}\right)-f(z)\right)}{\|g\|_{2}^{2}}\right) .
$$

Convergence Theorem for Fixed Step Size

Assume $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex and

- f is Lipschitz continuous with constant $G>0$:

$$
|f(x)-f(y)| \leqslant G\|x-y\| \text { for all } x, y
$$

Theorem
For fixed step size t, subgradient method satisfies:

$$
\lim _{k \rightarrow \infty} f\left(x_{\text {best }}^{(k)}\right) \leqslant f\left(x^{*}\right)+G^{2} t / 2
$$

Convergence Theorems for Decreasing Step Sizes

Assume $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex and

- f is Lipschitz continuous with constant $G>0$:

$$
|f(x)-f(y)| \leqslant G\|x-y\| \text { for all } x, y
$$

Theorem
For step size respecting Robbins-Monro conditions,

$$
\lim _{k \rightarrow \infty} f\left(x_{\text {best }}^{(k)}\right)=f\left(x^{*}\right)
$$

